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Abstract—Aiming at obtaining high power density of 

surface-mounted and interior permanent magnet 
synchronous motor (SIPMSM), it is important to 
accurately calculate the temperature field distribution of 
SIPMSM, and a magnetic-thermal coupling method is 
proposed. The magnetic-thermal coupling mechanism is 
analyzed. The thermal network model and finite element 
model are built by this method, respectively. The effects of 
power frequency on iron losses and temperature fields are 
analyzed by the magnetic-thermal coupling finite element 
model under the condition of rated load, and the 
relationship between the load and temperature field is 
researched under the condition of the synchronous speed. 
In addition, the equivalent thermal network model is used 
to verify the magnetic-thermal coupling method. Then the 
temperatures of various nodes are obtained. The results 
show that there are advantages in both computational 
efficiency and accuracy for the proposed coupling method, 
which can be applied to other permanent magnet motors 
with complex structures. 

 
Index Terms—Equivalent thermal network method, 

magnetic-thermal coupling method, power frequency, iron 
loss, surface-mounted and interior permanent magnet 
synchronous motor(SIPMSM), temperature field. 

I. INTRODUCTION 
URFACE-MOUNTED and interior permanent magnet 
synchronous motor (SIPMSM) integrates the advantages of 

over load ability, high power density, high efficiency and  
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energy saving presented in surface mounted and interior 
permanent magnet motor[1-2]. As the power density of 
SIPMSM increases, its unit volume loss increases, along with 
the operation temperature. Many insulation materials are 
included in SIPMSM, whose performances are directly related 
to the motor temperature. The temperature of SIPMSM also 
directly affects the working point of permanent magnet, and 
excessively high temperature may damage the insulation 
materials and lead to irreversible demagnetization of the 
permanent magnet. It can eventually lead to performance 
indicators decline and the SIPMSM may even stop working [3]. 
Therefore, it is important and necessary to accurately estimate 
the temperature distribution of the SIPMSM during the process 
of motor design. 

The hybrid rotor structure of surface-mounted permanent 
magnet (SPM) and interior permanent magnet (IPM) is adopted 
by SIPMSM. After a SIPMSM works for a long period of time, 
the temperature will sharply rise because of the eddy current 
loss in the permanent magnet and poor thermal conduction 
ability of the rotor. Therefore, larger deviation at the working 
point of permanent magnet is induced, and then the back EMF 
produced by it is changed, which influences the distribution of 
the internal magnetic field of SIPMSM, resulting in increased 
losses. The transformation of the working point of permanent 
magnet affects not only the magnetic flux densities in the air 
gap and core, but also the amplitude of the current required to 
produce the same torque. Thus, along with the change of the 
temperature of the permanent magnet, iron loss and winding 
copper loss will change. In addition, the winding copper loss 
and the size of the permanent magnet eddy current loss are 
related to the conductivity of the change with temperature. 
Therefore, it is necessary to propose a new method to 
accurately predict the temperature distribution of SIPMSM. 

The analysis of the temperature field of the motor is mainly 
used the concentrated heat parameter method, equivalent 
thermal network method and finite element method [4-8]. The 
finite element method is becoming popular to exactly calculate 
the real temperature distribution of each component of the 
motor [9-12]. The literatures [13-18] base on the coupling of 
flow field and temperature field, the mathematical model and 
physical model are established, and the finite element method is 
used to calculate the coupling field. The correctness of the 
proposed model is verified by the temperature test of motor. 
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The literature [19] aims to the multi-physics field coupling 
problem in the segment of the submersible motor, and it 
establishes a coupling model of electromagnetic-force-thermal, 
and the accuracy of the calculation the finite element method is 
proved by comparing with the experimental results. The 
temperature field of SIPMSM about another kind of structural 
form is presented [20], and the three-dimensional finite element 
method is used to analyze the 3-D full-domain temperature 
field of SIPMSM. 

Therefore, this paper adopts the finite element method and 
numerical method to calculate the temperature field distribution 
of the SIPMSM, and puts forward analysis of the mechanism of 
magnetic-thermal coupling. In order to accurately estimate the 
temperature of each part of SIPMSM, the magnetic-thermal 
coupling method is used to calculate the temperature 
distribution. The finite element model and equivalent thermal 
network model of magnetic-thermal coupling are established to 
study the magnetic-thermal coupling mechanism of SIPMSM, 
and calculate the temperature distribution in the rated operation 
state. The relationship between the power frequency and 
temperature distribution in the rated load and that between the 
load and temperature fields at the synchronous speed are 
analyzed. The proposed method can be used to predict the 
temperature distribution of hybrid permanent magnet motors. 

II. STRUCTURE OF SIPMSM AND MECHANISM ANALYSIS 

A. Structure and parameters of SIPMSM 
SIPMSM contains surface-mounted permanent magnet 

(SPM) and interior permanent magnet (IPM), Fig.1 shows the 
structure of SIPMSM and the corresponding key design 
parameters are shown in Table I. 

TABLE I 
THE PARAMETERS OF SIPMSM 

Items Value/ unit 
Number of pole 4 
Number of turns 41 
Air gap length 0.5mm 
Axial length 135mm 
Rated current 12.2A 
Rated voltage 380V 
Rated power 7.5kW 

Inner diameter of the stator 91mm 
Outer diameter of the stator 155mm 

Thickness of the permanent magnet 2mm 
Stator core

Rotor core

SPM

IPM

Stator winding

shaft

 
Fig. 1.  The structure diagram of SIPMSM. 

B. Mechanism analysis  
The magnetic-thermal coupling mechanism of SIPMSM is 

that the iron losses, copper losses and permanent magnet eddy 
current losses are produced in the motor, which affects the 
temperature field distribution. The magnetic field of SIPMSM 

is generated by the permanent magnet excitation. When the 
working point of the permanent magnet is influenced by the 
temperature, the distribution of the magnetic field inside the 
motor is influenced by the permanent magnet, and the 
magnetic flux density in the air gap and the core will change. 
The iron losses and permanent magnet eddy current losses are 
affected by the magnetic field. The thermal conductivity, the 
resistance of the copper core, the permanent magnet 
remanence and intrinsic coercivity are affected by the 
temperature. 

The relationships between the copper losses, iron losses, 
permanent magnet eddy current losses and temperature are 
shown in formulas (1) - (4) respectively[21].  
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Where I is the current effective value of a phase winding coil.
R is the phase winding resistance. f is the alternating 
magnetization frequency. eK  , hK  are respectively the eddy 
current loss and hysteresis loss coefficient, and B is the 
maximum flux density motivated by AC power. PM  is the 
permanent magnet conductivity, PMV is the volume of 
permanent magnet, PMf is the eddy current frequency in 
permanent magnet, PMw  is the span of permanent magnet along 
the rotor circumferential direction, PMB is the amplitude of 
magnetic flux density in permanent magnet. T is the 
temperature, V is the volume of the motor,  is the thermal 
conductivity. 

The relational expressions between the temperature and iron 
core thermal conductivity, copper resistance, remanence and 
intrinsic coercivity respectively of the permanent magnet can 
be illustrated in formula (5) - (8)[22]. 
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Where T0 is the initial temperature, Tt is the temperature at t , 
R0 is the resistance at T0, Rt, is the resistance at Tt, is the iron 
core thermal conductivity at Tt, 0  is the iron core thermal 
conductivity at T0,  is the iron core temperature coefficient,

roB   and rtB  are respectively the residual magnetic flux density 
at 0T and Tt, Br  is the permanent magnet remanence that is 
reversely related to temperature, s is the percentage of the 
magnetic properties returned to the original value after the 
permanent magnet temperature is restored, Hct is intrinsic 
coercive force at Tt, Hc0 is intrinsic coercive force at T0, ctH  is 
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the degree of intrinsic coercive force of permanent magnets that 
varies reversibly with temperature. 

III. THE EQUIVALENT THERMAL NETWORK MODEL 

A. Basic assumptions  
(1) The temperature distribution of SIPMSM is symmetrical 

along the circumferential direction, and the cooling conditions 
in the circumferential direction are the same;  

(2) Only the copper losses, iron losses, permanent magnet 
eddy current losses are considered, while the impacts of other 
skin effects are ignored; 

(3) The effect of heat radiation on the temperature field 
distribution is ignored. 

Based on the above assumptions, the initial equivalent 
thermal network model and the modified equivalent thermal 
network model are shown in Fig. 2. The magnetic-thermal 
coupling is not considered in the initial equivalent thermal 
network model, and it is considered in the modified equivalent 
thermal network model. Table II shows the temperature nodes 
in the SIPMSM thermal network model. The two models adopt 
the same temperature nodes. 
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Fig. 2.  The initial equivalent thermal network model. 

In Fig. 2, i jR is the thermal resistance between temperature 
nodes i and j . 3P  , 4P  denote the stator yoke iron losses. 5P  , 6P
are the winding copper losses. 7P  , 8P  represent the stator tooth 
iron losses. 11P  , 12P denote the eddy current losses of SPM. 13P  , 

14P represent the upper rotor iron losses. 15P  , 16P are the eddy 
current losses of IPM. 17P  , 18P indicate the lower rotor iron 
losses. 

TABLE II 
TEMPERATURE NODES OF THE THERMAL NETWORK MODEL 
Temperature nodes Corresponding parts structure 

0T  External environment 

1 2 22T T T  Housing 

3 4T T  Stator yoke 

5 6T T  Winding 

7 8T T  Stator tooth 

9 10T T  Air gap 

11 12T T  SPM 

13 14T T  The upper rotor core 

15 16T T  IPM 

17 18T T  The lower rotor core 

19 20T T Shaft 

23T End cover 

B. Thermal resistance  
The size and distribution of the losses affect the temperature 

distribution of the motor. In the equivalent thermal network 
model, the loss is calculated as shown in formulas (1)-(3). 
According to the calculation results of formulas (1)-(3), each 
part of the losses is used as a heat source to be loaded into the 
corresponding heat source node. The heat transfer in SIPMSM 
mainly includes heat conduction and convection heat 
dissipations, neglecting the thermal radiation. The thermal 
resistance in SIPMSM is the conduction resistance and the 
convective heat dissipation, respectively, as shown in 
formulas (9) (10) [23]: 
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dR  is the conduction thermal resistance, h  represents the 
length of heat transfer path, d  is the thermal conductivity, ds  
denotes the conduction cross sectional area, vR  indicates the 
convective thermal resistance, v is the convection coefficient 
of heat transfer, vs  denotes the convection cross sectional area. 

4 8R  is taken as an example. Flat bottom slot is used to stator of 
SIPMSM, as shown in Fig. 3. A portion of the conductor heat in 
the slot is transmitted to the yoke through the bottom of the slot, 
and the rest to the linear portion of the stator parallel teeth. The 
heat exchange between the tooth portion and the yoke portion is 
set in the tooth width range, and the heat conduction area of the 
tooth portion to the yoke portion is calculated by formula (11). 
The thermal resistance 4 8R can be derived as formula (12). 
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bt represents the tooth width, efl  indicates axial length, Z  
denotes number of pole, sD  is the stator outer diameter, and siD  
is the stator inner diameter. 

tb

Stator yoke

Stator tooth

 

Fig. 3.  The stator core section diagram. 

C. Determination heat dissipation coefficient 
The surface heat dissipation coefficient of SIPMSM is the 

parameters that reflect the surface heat of the convection heat 
transfer between the outer surface of housing and the 
surrounding air, the stator inner surface and the air gap, the 
rotor outer surface and the air gap. It is related to the surface 
temperature of the component, surrounding medium 
temperature, air gap medium flow rate and other factors. 
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Consequently, the heat dissipation coefficient of each 
component of SIPMSM is analyzed. In this paper, the reference 
temperature is chosen as 20°C. 

The housing is directly in contact with the outside air, and the 
heat exchange between the housing and outside air takes the 
form of natural convection. When the air is used as the cooling 
medium, the heat dissipation coefficient of the housing surface 
depends on the air flow rate, and its coefficient of heat 
dissipation is expressed as shown in (13).The end surface heat 
dissipation coefficients of the stator and rotor cores are shown 
in equations (14)and(15)[24]. 

1 14 1 0.5 av                          (13) 
0.7

2 15 6.5 rv                            (14)                        
0.385

0.23
3 00.822 r

n
D                  (15) 

Where av is the air blowing speed on the surface of the 
housing. rv  represents the linear velocity of the rotor surface.

0  denotes the air thermal conductivity. rD is the rotor outer 
diameter. denotes the air viscosity coefficient. n indicates the 
motor speed. The air gap between the stator and rotor is 
affected by the tangential motion of the rotor, and the other side 
is blocked by the stator inner surface. Therefore, the surface 
heat dissipation coefficient between the stator and rotor is 
expressed in (16), and the surface heat dissipation coefficient at 
the stator winding end is shown in (17)[25]. 
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Assuming the inner surface of the stator and the outer surface 
of the rotor are smooth and cylindrical, the equivalent 
coefficient of thermal conductivity of air gap within the 
medium can be calculated by the following methods [26]. The 
Reynolds number in the air gap is solved by equation (18), and 
the critical Reynolds number is calculated according to 
equation (19), 

Re 19.55r a
a

v h                         (18)                     

Re 41.2 39.3si
cr

D
g

                     (19) 

ah  is the air-gap thickness, and g  denotes the acceleration 
of gravity. Because Rea < Recr , the medium movement in the 
air gap is the laminar flow. Then the air gap between the stator 
and rotor can be regarded as ordinary air to set the coefficient of 
thermal conductivity. 

The thermal network model is illustrated in Fig. 2, with the 
heat balance equations shown in formula (20), and the thermal 
conductivity matrix shown in formula (21), where R is the 
thermal resistance matrix, G denotes the thermal conductivity 
matrix, T represents the temperature nodes matrix, and P is 
the node loss matrix. The temperature node values of the 
SIPMSM are computed based on the equivalent thermal  

 

network method as shown in Table III. 
GT = P                                      (20)                   

1G =
R

                                     (21) 

TABLE III 
CALCULATION RESULTS OF TEMPERATURE NODES FOR SIPMSM 
Parameters The initial value The coupled value 

0T  20°C 20°C 
1T  82.8°C 84.3°C 

3T  85.1°C 86.6°C 

5T  115.9°C 117.8°C 

7T  100.2°C 101.4°C 

11T  94.4°C 95.8°C 

13T  94.1°C 95.5°C 

15T  94.1°C 95.6°C 

17T  93.3°C 94.7°C 

19T  93.1°C 94.4°C 

IV.THE MAGNETIC-THERMAL COUPLING FINITE ELEMENT 
MODEL 

A. Basic assumptions and calculation concept  
According to the structure of SIPMSM, the motor 

magnetic-thermal coupling finite element model is established 
on the basis of the following hypothesis: 

(1) The temperature field distribution of SIPMSM along the 
circumferential direction is symmetrical. The cooling 
conditions of the motor in the circumferential direction are 
assumed to be the same; 

(2) The influence of temperature change for the steel loss is 
ignored and the physical characteristics of each medium in the 
model parameters do not change with temperature; 

(3) The mechanical losses owing to the influence by 
temperature are ignored; 

(4) Close contacts are placed between the solid components 
of the motor, and the influence of the junction box for the 
cooling is ignored; 

(5) The stator slot will be stratified equivalent analysis, the 
equivalent model structure as shown in Fig. 4; 

The magnetic-thermal coupling finite element model of 
SIPMSM and the flow chart of the calculation process are 
respectively shown in Fig. 5 and Fig. 6. The finite element 
application condition is to discretize the structure of SIPMSM, 
and the mesh adopts adaptive segmentation. The basic process 
of finite element method to solve the problem mainly includes: 
the discretization of the analysis object, the finite element 
solution, and the post-processing of the calculation result. 

Insulating
lyaer

Equivalent 
insulation

Coppercore

 
Fig. 4.  The equivalent simplified model of stator slot. 
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Fig. 5.  The magnetic-thermal coupling finite element model of SIPMSM. 

It can be seen from Fig. 7 that the relevant temperature 
dependent parameters are real-time updated with the change of 
temperature during the process of magnetic-thermal coupling 
step by step. According to the updated parameters, additional 
losses are introduced. Such an iterative computation is carried 
out continuously until the coupling analysis meets the 
requirements. The finite element model and thermal network 
model use the same heat dissipation coefficient.  

Start

Modeling

Assuming the working temperature 
of windings and permanent magnets

The simulation of 
electromagnetic field

The analysis of loss

Magnetic thermal coupling 
temperature field model

Temperature field 
simulation results

End

Correcting the 
coefficient

Error

Yes

No 

 
Fig. 6.  Flow chart of Magnetic-thermal coupling calculation. 

B. Computation results  
By solving the magnetic-thermal coupling finite element 

model the temperature field distribution of SIPMSM in the 
rated operation is obtained. Table IV shows the temperatures of 
the main components of SIPMSM. Fig. 7 displays the 
three-dimensional temperature field of SIPMSM. 

TABLE IV 
TEMPERATURE OF MAIN COMPONENTS FOR SIPMSM 

Parts of 
motor 

The average 
temperature 

The lowest 
temperature 

The highest 
temperature 

Housing 86.2°C 72.1°C 92.3°C 
Stator core 93.7°C 81.5°C 107.1°C 
Winding 
copper 120.2°C 116.3°C 123.2°C 

SPM 98.4°C 98.2°C 99.7°C 
Rotor core 98.3°C 96.9°C 98.9°C 

(a) The whole Fig.                                (b) Housing

 
(c) Stator core                                       (d) Winding

     (e) Rotor core                              (f) Permanent magnet 

Fig. 7.  3-D temperature field of SIPMSM at rated condition. 

From the vertical comparison of Table IV, the highest 
temperature appears in the winding copper core, and the lowest 
temperature appears in the housing. From the horizontal 
comparison of Table 4, the temperature difference of the 
housing is 20.2°C, and that of the stator core is 25.6°C. The 
temperature differences of the SPM and rotor core are both not 
more than 2°C. Because the winding copper core is the main 
heat source and the small heat dissipation factor of the 
insulation layer leads to poor heat dissipation, the peak value of 
the temperature of SIPMSM is located at the center of the stator 
winding. SIPMSM is classified as a type of closed small 
permanent magnet synchronous motor, and the heat only 
radiates outward through the housing in the natural air cooling 
way, thus the temperature of the housing is the lowest. The 
eddy current losses on SPM are regarded as heat sources, so the 
temperature of SPM is slightly higher than that of the rotor 
core. 

It can be seen from Fig. 7, that the temperature of the housing 
is unevenly distributed, since heat dissipation is faster in the 
areas of wind fins and lower temperature is presented in these 
areas. The effects of the width of fins on the temperature 
distributions in the housing, stator core and winding can be 
apparently seen in this Fig.7. The temperature difference 
between the rotor and stator regions is relatively large. The 
reason for this phenomenon is that wide fins have large areas, 
which is advantageous to heat dissipation of the housing. 
However, small thermal conductivity of the air gap leads to 
poor ability of heat exchange between the stator and rotor areas, 
and the excessive heat on the rotor is difficult to be transmitted 
to the stator, resulting in small overall temperature difference. 
A downward trend along the radial direction is presented for the 
temperatures of the components of the motor. The axial 
temperature range of housing is larger than the radial 
temperature range, while the situations are opposite for the 
other parts. The reason is that most of the heat in the motor is 
transferred to the stator core at first, and then it is dissipated to 
the surrounding air through the housing. 

In order to verify the magnetic-thermal coupling method, the 
temperature distribution of SIPMSM with the rated operation 
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state is calculated by the equivalent thermal network method 
and the finite element method. The results are shown in Table 
V.  

TABLE V  
IN CONTRAST OF RESULTS 

Parts of 
motor 

The initial thermal 
network 

The coupled 
thermal network 

The coupled finite 
element 

Housing 82.8°C 84.3°C 86.2°C 

Stator core 90.1°C 92.5°C 93.7°C 

Winding 115.9°C 117.8°C 120.2°C 

SPM 94.4°C 95.8°C 98.4°C 

C. Comparative analysis  
Through comparative analysis, different calculation data of 

the three models is displayed, but the error is within a 
reasonable range. By illustrating the three models, adaptability 
and compatibility are presented for the temperature field 
calculation of SIPMSM, while validity and accuracy are 
guaranteed by adopting the magnetic-thermal coupling method. 
The magnetic-thermal coupling finite element model method is 
adopted. The finite element method not only has high 
computational accuracy, but also fully obtains the temperature 
field distribution and temperature curve under different 
operating conditions of the motor. 

V. ANALYSIS OF THE TEMPERATURE FIELD IN DIFFERENT 
WORKING CONDITIONS 

A. Rated load condition  
The power supply frequency of the motor is changed and the 

iron loss of the motor is changed, thus it is indispensable to 
study the losses in the motor. The relationships among the 
supply frequency, iron losses and the maximum temperature of 
the main components of SIPMSM are shown in Fig. 8. 
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Fig. 8.  Iron losses and the highest temperature of main components for 
SIPMSM under different power frequencies 

As can be seen from Fig. 8, the iron losses increase with the 
increase of the power supply frequency, and the relationship 
between them is approximately linear. Since a constant voltage 
frequency ratio of the rated load is used for SIPMSM, little 
variation is induced in the amplitude of flux density in the core. 
When the power supply frequency changes, the flux density 
frequency of the core varies accordingly, and the iron losses are 
only proportionally related to the flux density frequency in this 
case. The simulation results are obtained by applying the finite 
elements show approximately linear relationships.  

It can be seen from Fig. 8 that the temperatures of the main 
components of SIPMSM decrease first and then increase along 
with the increment of power supply frequency, and each of 
them reaches the lowest point when the power supply 
frequency is 30Hz. The SIPMSM operates in the low-speed 
operation mode when it is supplied by a power source of 20Hz 
with the rated load operation speed of 600rad/min. The iron 
losses are small in the mode, the coefficient of heat transfer and 
the revolving speed of motor parts are known from the formulas 
(14)-(17).Therefore, the heat dissipation capability will be 
deteriorated and the heat transfer capability between the stator 
and rotor will decline in when a lower speed is presented. On 
the contrary, the speed of the motor is high in the 
High-frequency operation mode. Although the heat dissipation 
capability is improved in this case, the iron losses increase with 
the increase of frequency, which also increases the temperature. 
Regardless of decrease or increase in the power supply 
frequency, the temperature of SIPMSM always increases, 
which indicates that the performance of SIPMSM during the 
frequency conversion is stable. 

B. Synchronous speed condition 
The temperatures of the main components of SIPMSM with 

respect to different loads are shown in Fig. 9. 
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Fig. 9.  Temperature of SIPMSM with different load. 

It can be seen from Fig. 9 that with the increase of the load, 
the temperatures of the housing, stator core, winding copper 
core and SPM increase, but no linear relationship is presented. 
Instead, the slope of each graph increases with the increment of 
load, and among all the graphs the increase of temperature for 
the housing is the most moderate. The highest temperature in 
the motor appears in the winding copper core. It can be seen 
that the speed of increase for the temperature of winding copper 
is much higher than that of SPM and housing, which makes the 
overall temperature difference in the motor increasingly bigger. 
The reason for this phenomenon is that with the increase of load, 
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the stator current also increases, so the growth rate of copper 
losses is much greater than that of iron losses. As the main heat 
source, the copper core is located in the middle of the stator slot 
and surrounded by insulations with poor heat conduction ability. 
The heat dissipation capability of housing is the strongest and 
the change amplitude of the temperature is the smallest. 

When the motor is in the full load operation mode, the 
highest temperature of winding copper is 123.2 °C, and the 
lowest temperature of housing is 72.1°C, which means that the 
temperature difference in the motor reaches 51.1°C. When the 
load torque of the motor is 55.1 Nm, the temperature of winding 
copper core rises sharply to 155.1°C, which is beyond the scope 
of class F insulation, and it will lead to rapid aging of motor 
insulation materials and even serious damage to the motor. 
When the load torque of the motor is 59.9 Nm, the temperature 
of the SPM drastically increases to 154.2°C, which exceeds the 
operating temperature of 150°C of the permanent magnet. If the 
operation is prolonged, it may cause irreversible 
demagnetization of the permanent magnet. According to the 
above analysis, the situation of motor overload should be 
prevented to avoid high temperatures in actual operations. 

C. Temperature influence 
The temperature of permanent magnet is important to 

evaluate performances of SIPMSM, and the relationship curves 
between the back EMF and temperature of the SPM is shown in 
Fig. 10(a). The relationship curves between the gap flux density 
and temperature of SPM is shown in Fig. 10(b). 
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Fig. 10.  The curves about temperature of the SPM 

As can be seen from Fig. 10, with the increase of the 
temperature of SPM, the peak value of the back EMF is shifted 

and decreasing, and the peak point of the air gap flux has a 
skewing and decline. The main reason is that with the 
permanent magnet working temperature increases, permanent 
magnet internal remanence and coercivity are reduced, and its 
operating point of the shift the change of permanent magnet 
working temperature makes the pole of the magnetic flux and 
the back EMF of a certain change. Therefore, larger deviation at 
the working point of permanent magnet is induced, and then the 
back EMF produced by it is changed, which influences the 
distribution of the internal magnetic field of SIPMSM. The 
transformation of the working point of permanent magnet 
affects the magnetic flux densities in the air gap.  

VI. CONCLUSION 
By comparing the calculation results of the equivalent 

thermal network model and the finite element model, the 
conclusion is drawn that the magnetic-thermal coupling method 
is adaptable for calculating the temperature field of SIPMSM. 

(1) The air gap makes the temperature difference between the 
stator region and the rotor region larger under the rated load and 
synchronous speed. The width of the fins has a significant 
effect on the temperature distribution of the stator region. 

(2) The magnetic-thermal coupling mechanism is proposed, 
which is used to the thermal network model and the finite 
element model, and the accuracy of temperature field 
calculation is enhanced by the magnetic-thermal coupling 
method. The advantage in computational accuracy makes the 
proposed coupled analysis method efficient and practical 
especially in initial motor optimization design. 

(3) When the power supply frequency is in the range of 
20Hz-60Hz in the rated load condition, the temperature of 
SIPMSM is kept in the normal range, demonstrating that the 
working performance of SIPMSM is stable.  

(4) In the synchronous speed condition, the temperature of 
SIPMSM is obviously affected by the load. When the motor 
loads 1.26 times the rated load torque, the temperature of 
permanent magnet begins over the limited working temperature. 
Therefore, the overload working state of SIPMSM should be 
avoided. 
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