
1 

 

Performance Analysis of the 2DoF Direct Drive Induction Motor Applying 
Composite Multilayer Method 
 
Jikai Si 1, Lujia Xie 1, Wenping Cao2, Yihua Hu3, Haichao Feng1 

 
1School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo Henan, China 

2University of Aston, Department of Electrical Engineering, Birmingham, UK 

3Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK 

 

 

Abstract—This paper presents a composite multilayer method (CMM) to evaluate the performance of a 

two-degree-of-freedom (2DoF) direct drive induction motor (2DoFDDIM) whose solid rotor is coated with 

a copper layer. It includes a rotary part and a linear part. Based on the traditional multilayer theory, a 

complete 2DoFDDIM CMM computer program importing propagation constants is built. Due to the 

complex magnetic field in a 2DoFDDIM, this paper mainly analyses it from the perspective of a single 

DOF motor. An equivalent circuit for the rotary part of the 2DoFDDIM is then derived applying CMM and 

the two-dimensional magnetic field distribution is obtained by solving Maxwell’s equations in motor layers. 

The developed torques, power factors and stator currents of the rotary part with different slips and the latter 

two of the linear part at zero speed are calculated by CMM, which are then compared with results from the 

finite element method (FEM) and experimental results. The computation time of the CMM is far less than 

that of the FEM. The acceptable accuracy confirms the effectiveness of the CMM for analysis and 

performance calculations of the 2DoFDDIM. 

 

Index Terms—Composite multilayer method, double-layer solid rotor, finite element method, 

two-degree-of-freedom motor. 

1. Introduction 

Electric motors are one of the components involved that can contribute to energy savings [1]. 

Two-degree-of-freedom (2DoF) motors or actuators have high mechanical integration and reliability which 

can eliminate mechanical transmission in the middle of a driver. They can produce rotary, linear and helical 

motion by themselves, as shown in Fig.1, and are widely utilized in industrial machinery such as boring 

machines and grinders [2]- [3]. The conventionally complicated structure comprising of a linear motor and 

a rotary motor can be substituted by one 2Dof motor, which greatly simplifies the system. A few different 
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topologies of 2DoF motors have been proposed and investigated by researchers [2]- [10]. For example, a 

2DoF outer rotor spherical actuator [7] and a novel magnetization pattern [8] have been presented for 2DoF 

rotary-linear actuators. In this paper, a two-degree-of-freedom direct drive induction motor (2DoFDDIM) 

with an integrated structure is proposed, as shown in Fig. 2. 

Rotary motor

Linear motor 

2DoF motor

 

Fig. 1. System simplification by 2DoF motors 
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Fig. 2. Structure of 2DoFDDIM 

a Rotary motion arc-shape stator  

b Linear motion arc-shape stator. 

c Integrated stator  

d Rotor  

e Assembly of 2DoFDDIM  

f Prototype of 2DoFDDIM 

 

This stator consists of two arc-shaped iron cores, namely a rotary and a linear armature. The former is 

slotted along the axial direction whereas the latter is slotted in the circumferential direction. They have the 

same electromagnetic parameters and are assembled orthogonally to form a stator. As for the common solid 

rotor shared by both stators, a double-layer structure is applied to enhance the performance of the 

2DoFDDIM. It is composed of solid steel coated with a thin copper layer. Because the permeability of back 

steel is far higher than copper, the radial magnetic field will be increased, which will improve the induced 

magnetic field in the rotor. So the output and power factor of the 2DoFDDIM will be raised especially 
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when the slip is small. Although it complicates the mechanical production process, a double layer rotor can 

provide a better choice. Compared with a single layer rotor, the fluctuation of speed decreases when the 

double layer rotor is applied to the 2DoFDDIM [11]. 

When the rotary stator is energized, a rotating magnetic field will be generated. According to the 

electromagnetic induction principle, the voltage and current will be induced on the rotor surface to produce 

an electromagnetic torque. In a similar manner, a traveling wave magnetic field will be generated to create 

a force when the linear stator is powered. If either the rotary or linear stator is energized, the motor 

produces a linear mechanical motion (single degree). When both are energized, the motor produces a 

helical motion, namely two-degree mechanical motion [12]-[13]. The main design parameters are listed in 

Table 1. 

Table 1 Main design parameters of the 2DoFDDIM 

Item 
Value/Dimension 

Rotary Part Linear Part 

Rated power (PN) 1.1 kW 1.1 kW 

Rated voltage (VN) 220 V (Y) 220 V (Y) 

Frequency (f) 50 Hz 10 Hz 

Pole pairs (p) 2 2 

Stator inner diameter 98 mm 98 mm 

Stator outer diameter 155 mm 155 mm 

Stator axial length 130 mm 156 mm 

Air-gap length 1 mm 1 mm 

Slot number 12 12 

 

Regarding the structure of the double-layer solid rotor motor, the rotor material along the radial direction 

is different. Therefore, the electromagnetic field and equivalent circuit parameters cannot be determined 

accurately by using the equivalent magnetic circuit method or equivalent magnetic impedance method 

alone. Neither method can derive the distribution of electromagnetic field in the solid steel. Moreover, they 

are difficult to be used in order to analyse double layer rotor motors since many empirical coefficients are 

involved. Hence, finite element methods (FEMs) are generally used [7], [14], [15]. However, these require 

lengthy computational time. Therefore, a multilayer theory is developed to analyse the solid unslotted rotor 

induction machines [16]. A multilayer model based on the 2D polar coordinates is established [17] while a 
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semi-analytical 3-D model based on the Fourier analysis is developed in [18]. The latter is able to calculate 

the fringing fields in a 3-D slotted cylindrical structure by summing up the linear material properties. 

Computational time is reduced with an acceptable accuracy. Furthermore, a complex propagation constant 

can be imported to calculate the rotor parameters [19]- [20].  

For 2DoFDDIM, the equivalent magnetic circuit method, equivalent magnetic impedance method and 

traditional multilayer method have all been used to analyse performance. However, the results are not 

satisfactory enough. The errors of these three methods are far more than 40% compared with FEM. In a 

previous work [14], the permeation depth method (PDM) was applied to analyse its characteristics, while 

the inner electromagnetic field, as the fundamental theoretical analyses, which is helpful in the future 

design and optimization, cannot be derived. Apart from this, PDM is not a good way to analyse motor 

designs with double-layer rotor structures. Therefore, based on the previous research and special structure 

of 2DoFDDIM, this paper develops a composite multilayer method (CMM) to improve the traditional 

multilayer theory with a propagation constant method. The CMM, compared with the traditional multilayer 

method, is more suitable to the 2DoFDDIM with double-layer rotor. The complete CMM program diagram 

and parameters determination are provided. The relevant calculation of copper layer is also carried out in 

the computer program, thus there is no need to do any extra work to perform it. However, there are rather 

intricate electromagnetic field related phenomena such as the coupling effect when both rotary motion and 

linear motion are considered. Therefore, this paper mainly analyses it from the perspective of a single DOF 

motor. The distribution of electromagnetic fields for the rotary part is derived. The characteristics of the 

rotary part and linear part applying the CMM are compared with FEM and experimental results of the 

2DoFDDIM. 

2. Analysis and Computation 

2.1. Multilayer Model of 2DoFDDIM 

In order to derive the CMM model for the 2DoFDDIM, the following assumptions are used: 

i) All regions are extended infinitely in a circumferential direction and stretch to infinity in the axial 
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direction. 

ii) There is no displacement current and magnetic saturation is neglected. 

iii) The curvature of the rotor is neglected and the rotor material is isotropic. 

iv) The stator windings current is represented by a current sheet at the airgap-stator interface, which is of 

unlimited length along a circumferential direction and unlimited thickness along a radial direction.  

v) The stator slotting effect is included by introducing Carter’s coefficient Kc. 

vi) The end effect caused by a tangential current in the solid rotor, is taken into account with the solid 

rotor end effect coefficient Ke, which is relevant to stator parameters.  

Where 
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 , the slot width 

b01=2.5 mm, the air-gap length δ=1 mm, the tooth pitch t1=5.6 mm, the polar pitch τ=45.16 mm, the stator 

axial diameter Le=130mm. Thus, through derivation Kc=1.21, Ke=1.22. 

The CMM model of 2DoFDDIM is established based on the traditional multilayer model [21], in which 

the rotor is divided into a number of laminar regions, as shown in Fig. 3. Where the first layer is a 

halfspace, the numbers 1~N-2 are layers of solid steel and the layers N and N-1 correspond to the copper 

layer and air-gap, respectively. The greater the number of secondary layers, the higher the precision and 

computational time. σi is the conductivity of each layer, ωi is the angular frequency，μi is the permeability 

of each layer’s external surface (i=1,2,…,N-2). The x-axis is the circumferential direction, the y-axis is the 

radial direction and the z-axis is axial direction [22]. 
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Fig. 3. Multilayer model of the 2DoFDDIM 
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The infinitely thin current sheet J is sinusoidal and moves with synchronous speed along the x-axis.  
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where J0 is the magnitude of stator current density, as shown in (2), α=π/τ, τ is the pole pitch, and ω1 is the 

angular frequency. J0 can be written as: 
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where m1 is the number of phases, KdqW is the series number of armature winding per phase, I1 is the stator 

phase current, and Di1 is the inner diameter of the stator.  

According to the previous assumptions, it can be supposed as follows: 
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The equation for the electromagnetic field in a layer can be derived from two of the four Maxwell 

equations (4): 
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The constitutive relation (5) is the following: 
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Bearing in mind the boundary condition (6) of each layer, the transfer matrix of electromagnetic field, as 

shown in (7), is conducted by combining (4) and (5) [25]. 
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Where B  is the magnetic flux density, H  is the magnetic field intensity, E  is the electric field intensity, 

zyx eee  ,,  are unit vectors of x, y, z, respectively. y=0 represents the junction of layers i-1 and i, bi is the 
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layer thickness， Hxi and Byi are the tangential magnetic field intensity and radial magnetic flux density of 

the external surface (i.e. nearer to the air gap) of layer i, respectively. 
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Where 2/12 )( iiii ja    which is related to skin depth, and )/( iii ja  . The overall boundary 

conditions are given as: 
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It should be noted that the computational method for the outermost layer (copper layer) is different from 

the traditional multilayer theory. Moreover, the difficulty in determining parameters involved in the 

multilayer theory will be overcome in the following sections. 

2.2. Algorithm of the CMM 

The parameters of the magnetic field and the machine’s equivalent circuit are determined by a CMM 

iteration program which takes the nonlinear permeability of the steel layer and particularity of the copper 

layer into consideration. A complete 2DoFDDIM CMM computational program diagram is provided, as 

shown in Fig. 4, and explained as follows.  
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Fig. 4. A complete 2DoFDDIM CMM computational program diagram 

In the first cycle, an arbitrary value is assigned to the stator current I1 and μ1~μN-2 to initiate the program. 

It can be found that the value of Hx1 increases inversely with the slip. Moreover, in order to fulfil (8) and 

further improve calculation accuracy, it is better to maintain Hx1 below 50 when the slip is 1. It can be 

achieved by modifying the thickness of each layer for repetitive iterations. According to the transfer matrix 
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(7) and boundary condition (8), the magnetic field components Hxi, Hyi, and Byi (i=1~N) are then 

determined. Thus, the resultant 22

yixii HHH  is derived. It should be noted here that a loop is created to 

take the nonlinear B-H characteristics of the lamination material into account. In order to realize it in the 

iterative program, the B-H curve is represented by a higher order parabola [24]. 
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For the rotor steel used in 2DoFDDIM, Kt≈0.8, t≈7. Applying Hi into (9), the new permeability μii is 

derived. μii is then used for the second cycle. Another loop should be used to ensure Hxn=J0 of the boundary 

condition (8). Once the execution is out of the loops, the values of Hxi and Byi obtained in the previous 

program will be used to calculate the steel impedance Zsteel, as shown in (10). 
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where D2 is the diameter of the rotor, Le is the effective length of the iron core, ZN-2 is the wave impedance, 
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, and s is the slip. ByN-2 and HxN-2 are the radial magnetic flux density and tangential 

magnetic field intensity of the steel surface, respectively.  

After several attempts, it was found that the iteration speed was slow. The results do not converge if we 

only apply the multilayer theory to the copper layer of the 2DoFDDIM. To circumvent this difficulty, the 

propagation constant Kcu is imported to calculate the equivalent circuit parameters of copper layer [17], as 

shown in (11) -(12). 
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where dcu is the thickness of copper layer, ωcu is the angular frequency of the copper layer, and μcu is the 

copper permeability. The coefficient αcu takes into account the complex propagation of the magnetic field, 
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2/1)( cucucucu j   , where σcu is the copper conductivity. The real constant is β=π/τ. Thus, the rotor 

impedance is given by 

steelcu

steelcu
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Having found Z2, it is easier to calculate the stator voltage U11. Together with the known parameters of 

2DoFDDIM, the new I1 and J0 can be derived for the next cycle. Once the iterative precision is satisfied, 

the iteration stops. After numerous loop iterations, accurate results of I1, μi, Hxi, Byi are then derived. 

Therefore, the magnetic field distribution in the rotor can be obtained.  

The progress of key parameters, such as U11, I1, Hx(n), solved in each iteration of the CMM algorithm in 

Fig. 4 is shown in Fig.5 (slip=0.8). It can be seen that only 12 iterations are needed for U11 to converge to 

U1, 14 iterations for I1 to reach the steady value and less than 95 iterations for Hx(n) to J0, in which the 

elapsed time is only 0.84 seconds for the calculation of the whole program.  
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Fig. 5. The progress of key parameters, such as U11, I1, Hx(n) 

a Iteration of U1 

b Iteration of I1. 

c Iteration of Hx(n). 

2.3. Equivalent Circuit 

The per-phase equivalent circuit of the 2DoFDDIM is illustrated in Fig. 6. R1, Rm, and X1, Xm are the 

resistance and reactance of the primary winding and the excitation, respectively, Rcu, Rsteel, and Xcu, Xsteel are 

the equivalent resistance and reactance of the copper layer and the steel layer, respectively. R2 and X2 are 

the rotor equivalent resistance and reactance, which are slip-dependent parameters. R1, Rm, Rcu, Rsteel, R2 and 

X1, Xm, Xcu, Xsteel, X2 are the real and imaginary components of the corresponding impedances Z1, Zm, Zcu, 

Rsteel and Z2, respectively. 
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Fig. 6. Equivalent circuit  

The equivalent circuit parameters are listed in Table 2. Therefore, the torque, power factor and stator 

current can be derived accordingly. 
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Table 2 Equivalent circuit parameters (slip =1) 

Item Value (Ω)  Item Value (Ω) 

R1 4.49 X1 2.34 

Rm 0 Xm 5.55 

Rcu 2.88 Xcu 0.62 

Rsteel 15.38 Xsteel 13.33 

R2 2.51 X2 0.70 

2.4. Computation Results 

From the previous analysis, the electromagnetic field parameters Hxi and Byi along the radial variation of 

the rotor material can be obtained, as shown in Fig. 7. Where Hx and By are indicated by the ratio values 

Hxi/Hxn-2 and Byi/Byn-2 respectively. h1 represents the radial distance to the external surface of steel.  
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Fig. 7. Distribution of electromagnetic field of 2DoFDDIM.  

a The tangential magnetic field intensity 

b The radial magnetic flux density 

 

It can be seen that Hx and By decrease along the rotor’s radial direction and the attenuation increases 

when the slip goes up, based on the CMM, which takes the skin effect into account as illustrated before. 



14 

 

3. Simulation and Experimental Results 

To verify the CMM, the results of the rotary part of 2DoFDDIM are compared with the results from FEM 

and prototype tests. A 2D finite element model of the rotary part is established, as shown in Fig. 8 (a). Its 

flux distribution is shown in Fig. 8 (b) and (c) for a slip of 0.8.  

 

a 

 

b 

 

c 

Fig. 8. 2D finite element model of the rotary part of the 2DoFDDIM.  

a 2D finite mesh model 

b Distribution of flux density 

c Part distribution of flux density 
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From Fig. 8, the flux density indeed attenuates gradually with growing distance from the external surface 

of steel. This trend coincides with the results of CMM as well.  

The steady-state characteristics of the 2DoFDDIM, in terms of torque, power factor and stator current 

versus slip, are calculated using CMM and FEM. An overview of the comparison is shown in in Figs. 9-11, 

Table 3 and Table 4. 
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Fig. 9. Torque vs. slip. 
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Fig. 10. Power factor vs. slip. 
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Fig. 11. Stator current vs. slip. 
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Table 3 Torque and power factor vs. slip  

Slip 
Torque Power factor 

FEM CMM Error FEM CMM Error 

0.2 6.96 7.63 9.63% 0.75 0.67 10.67% 

0.3 11.67 12.64 8.31% 0.79 0.72 8.86% 

0.4 15.26 15.45 1.24% 0.82 0.76 7.32% 

0.5 18.11 17.32 4.36% 0.84 0.79 5.95% 

0.6 20.41 18.58 8.97% 0.85 0.82 3.53% 

0.7 22.27 19.43 12.75% 0.86 0.83 3.49% 

0.8 23.81 20.97 11.92% 0.876 0.85 2.97% 

0.9 25.10 21.37 14.86% 0.885 0.86 2.82% 

1 26.09 22.43 14.03% 0.894 0.87 2.68% 

 

Table 4 Stator current vs. slip 

Slip 
Stator current 

FEM CMM Error 

0.2 17.59 15.95 9.32% 
0.3 17.79 16.03 9.89% 
0.4 18.1 16.16 10.72% 
0.5 18.49 16.24 12.16% 
0.6 18.92 16.48 12.89% 

0.7 19.37 16.98 12.33% 

0.8 19.82 17.19 13.26% 

0.9 20.25 17.71 12.54% 

1 20.68 18.14 12.28% 

 

In comparison, the values of power factor are in relatively good agreement, in which the one derived by 

CMM comes out to be slightly below that from FEM. Furthermore, the values of torque calculated by 

CMM seem to be in good agreement with that from FEM for small slips and the errors are less than 15% 

for large slips. However, the stator current, with the error in the range of 9%-14%, is underestimated by the 

CMM. This underestimation can be explained by local saturation effects, which are neglected in the CMM. 

Moreover, the errors from the CMM are also caused by neglecting the variation of the stator reactance and 

the harmonic components. Furthermore, there are some correcting coefficients determined by experience in 

CMM, which are not always accurate. Moreover, the magnetic field along the axial direction is not referred. 

Thus, this error is inevitable. However, it is worth mentioning that the computational time of the CMM 

(less than one second) is far less than that of the FEM and the errors between the CMM and the FEM come 

out to be less than 15%. Also, the CMM is easier to change than the FEM, which is suitable to the 
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preliminary design and optimization of the 2DoFDDIM when many different operating points or designs 

have to be analyzed. 

Fig. 12 and Fig.13 show the prototype testing platform. It consists of: 

i) A drive source for 2DoFDDIM. 

ii) Frequency converters: YASKAWA V1000. There are two independent frequency converters in which 

the input is 380 V ac, and the output is made up of two series of 3-phase PWM waves. They are used to 

supply the rotary and linear stator windings, respectively. 

iii) A controller: TRIO MC403 motion controller. It is used to control the rotary, linear and helical 

motions of the 2DoFDDIM. 

iv) A position sensor: SIKO MSK5000-0241. The axial position and speed of linear motion are detected 

by grating encoding. 

v) AN OMRON limit switch. The switch is used to control the distance of linear motion and provide the 

switching signal in forward and reverse directions.  

vi) A SZKT rotary encoder. The rotary encoder is used to detect the rotary speed and direction of the 

2DoFDDIM and provide corresponding feedback signals. 

vii) An oscilloscope: YOKOGAWA DL7480. 

viii) An operation interface: Motion Perfect v3.2. 

The experiment is carried out under the condition of constant voltage frequency ratio (slip = 0.115). The 

rotary part is fed by a 50-Hz 220-V supply but the linear part is not powered. The stator current is 

manifested both on the rotary frequency converter and the oscilloscope. Fig. 14 shows the waveforms from 

the oscilloscope when the frequency is 20 Hz, and the amplitude of stator current is 117.8 mv. Because the 

ratio of current transformer used here is 100/1, the actual value of stator current is 11.7A. Then the RMS 

current is 8.33A. Similarly, the stator currents at different frequencies can be obtained, which are compared 

with those of the CMM, as shown in Fig. 15.  
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Fig. 12. Photograph of the testing platform system for the 2DoFDDIM 

 

 

 

 

  

Fig.13. Main parts of the testing platform system for the 2DoFDDIM 
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Fig. 14. Current and voltage results from the prototype machine 
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Fig. 15. Stator current (constant V/F control, slip =0.115) 

In comparison with the experimental test results, the error from CMM is less than 10%, which falls 

within acceptable range. 

As for the linear part, a similar analytical method can be used to research its performance. Unfortunately, 

on account of the restriction of laboratory conditions, such as the limitation of the rotor length, only the 

current when linear speed is zero is obtained by experimental tests, which is compared with the counterpart 

values from CMM and FEM, as shown in Table 5. Apart from this, the power factors derived by CMM and 

FEM are also listed. 

Table 5 Comparison of linear results (slip=1, V/F=180/10) 

Items CMM FEM Experimental test Error 

Linear current (A) 26.52 25.59 26.73 0.79% (with test) 

Power factor 0.54 0.49 / 10.2% (with FEM) 

 

It can be seen from Table 5, the error of linear current derived by CMM is only 0.79%, much lesser when 

compared with the values from experimental tests and the power factor calculated by CMM coincides with 
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that from FEM, which means that the CMM is also suitable to the linear part of 2DoFDDIM. However, 

when both the rotary part and linear part are powered and helical motion is happening, the electromagnetic 

field is much more complicated due to the special coupling effect between two-degree-of-freedom 

mechanical motions. Therefore, a certain couple effect factor must be imported. The related research is 

being worked upon and will be involved in the future work. 

4. Conclusion 

An improved electromagnetic analytical method named CMM has been applied to the analysis and 

performance calculation of the 2DoFDDIM from the perspective of a single DOF motor. A complete 

computer program is developed to determine key parameters for understanding multilayered rotors in the 

proposed machine. The propagation constant is imported when dealing with the copper layer. The rotor 

electromagnetic field distribution is extensively studied using the CMM. The equivalent circuit of the 

rotary part of the 2DoFDDIM is obtained by calculating the wave impedance. Torque, power factor and 

stator current of the rotary part under different slip values and of the linear part at zero speed are calculated 

from the CMM and FEM for comparison purposes. The stator voltage and current are also measured 

experimentally to verify the CMM. Compared with the FEM, the proposed CMM is simpler and quicker for 

analysis and performance calculations of the 2DoFDDIM.  
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