16 research outputs found

    Evasion of interferon-gamma responses by Toxoplasma gondii in murine and human fibroblasts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references.Co-evolution of pathogen and host helps drive biological diversity. Unlike viral-host interactions, little is known about the co-evolution of eukaryotic pathogens with their hosts. The intracellular parasite Toxoplasma gondii is an excellent model organism for co-evolution studies because its hosts include all warm-blooded animals, and genetically diverse Toxoplasma strains may be adapted to specific hosts. Toxoplasma must evade host immunity without killing the host to establish a chronic infection and ensure transmission. Interferon-gamma (IFNγ) activation of non-immune cells is crucial for host defense against Toxoplasma. In murine cells, interferon-inducible immune-related GTPases (IRGs) are essential to the IFN[gamma] response because they disrupt the parasitophorous vacuole (PV). However, Toxoplasma secretes the contents of apical secretory organelles into the host cell during invasion, and some of these proteins strain-specifically promote mouse virulence by inactivating the IRGs. Here, we show that two secreted Toxoplasma factors, the protein kinase ROP18 and the pseudokinase ROP5, determine IRG evasion. We demonstrate that ROP5 binds to and inhibits the oligomerization of Irga6, allowing ROP18 to phosphorylate the IRGs to inhibit PV accumulation. However, humans lack interferon-inducible IRGs, and ROP5 and ROP18 do not affect Toxoplasma growth inhibition in human cells, suggesting these factors specifically evolved to battle the IRG system. Both ROP5 and the IRGs exhibit diversifying selection, and these proteins may provide a model for study of eukaryotic pathogen-host co-evolution. We also uncover a novel mechanism of IFN[gamma]-mediated Toxoplasma growth inhibition in human fibroblasts that correlates with host cell death that cannot be abrogated by inhibiting cell death pathways. Furthermore, we observed parasite egress from IFN[gamma]-stimulated cells before replication, but inhibition of egress did not prevent cell death. Thus, the inhospitable intracellular environment of dying IFN[gamma]-stimulated human fibroblasts triggers parasite egress. This disrupts the intracellular niche, prevents replication and could promote immune clearance or depletion of parasite secretory factors. This work highlights the need for a parasite to balance immune evasion for increased parasite propagation with limiting parasite burden for host and parasite survival. Thus, host immune factors and parasite immune evasion factors have co-evolved, and strain differences may be due to adaptation to different hosts.by Wendy Niedelman Roberts.Ph.D

    Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

    Get PDF
    IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.National Institutes of Health (U.S.)Massachusetts Life Sciences Center (New Investigator Award)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33))Studienstiftung des deutschen VolkesCancer Research Institute (New York, N.Y.)Cleo and Paul Schimmel FoundationBayer HealthcareHuman Frontier Science Program (Strasbourg, France

    The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    Get PDF
    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans

    Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence*

    No full text
    At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence

    Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains

    Get PDF
    Background: Toxoplasma gondii has a largely clonal population in North America and Europe, with types I, II and III clonal lineages accounting for the majority of strains isolated from patients. RH, a particular type I strain, is most frequently used to characterize Toxoplasma biology. However, compared to other type I strains, RH has unique characteristics such as faster growth, increased extracellular survival rate and inability to form orally infectious cysts. Thus, to identify candidate genes that could account for these parasite phenotypic differences, we determined genetic differences and differential parasite gene expression between RH and another type I strain, GT1. Moreover, as differences in host cell modulation could affect Toxoplasma replication in the host, we determined differentially modulated host processes among the type I strains through host transcriptional profiling. Results: Through whole genome sequencing, we identified 1,394 single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) between RH and GT1. These SNPs/indels together with parasite gene expression differences between RH and GT1 were used to identify candidate genes that could account for type I phenotypic differences. A polymorphism in dense granule protein, GRA2, determined RH and GT1 differences in the evasion of the interferon gamma response. In addition, host transcriptional profiling identified that genes regulated by NF-KB, such as interleukin (IL)-12p40, were differentially modulated by the different type I strains. We subsequently showed that this difference in NF-KB activation was due to polymorphisms in GRA15. Furthermore, we observed that RH, but not other type I strains, recruited phosphorylated IKBa (a component of the NF-KB complex) to the parasitophorous vacuole membrane and this recruitment of p- IKBa was partially dependent on GRA2. Conclusions: We identified candidate parasite genes that could be responsible for phenotypic variation among the type I strains through comparative genomics and transcriptomics. We also identified differentially modulated host pathways among the type I strains, and these can serve as a guideline for future studies in examining the phenotypic differences among type I strains.National Institutes of Health (U.S.) (Grant AI080621)Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Knights Templar Eye Foundation (Postdoctoral Fellowship
    corecore