1,689 research outputs found
Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies
Grating-coupler-induced collective intersubband transitions in a
quasi-two-dimensional electron system are investigated both experimentally and
theoretically. Far-infrared transmission experiments are performed on samples
containing a quasi-two-dimensional electron gas quantum-confined in a parabolic
quantum well. For rectangular shaped grating couplers of different periods we
observe a strong dependence of the transmission line shape and peak height on
the period of the grating, i.e. on the wave vector transfer from the diffracted
beams to the collective intersubband resonance. It is shown that the line shape
transforms with increasing grating period from a Lorentzian into a strongly
asymmetric line shape. Theoretically, we treat the problem by using the
transfer-matrix method of local optics and apply the modal-expansion method to
calculate the influence of the grating. The optically uniaxial
quasi-two-dimensional electron gas is described in the long-wavelength limit of
the random-phase approximation by a local dielectric tensor, which includes
size quantization effects. Our theory reproduces excellently the experimental
line shapes. The deformation of the transmission line shapes we explain by the
occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres
Order-disorder transition in nanoscopic semiconductor quantum rings
Using the path integral Monte Carlo technique we show that semiconductor
quantum rings with up to six electrons exhibit a temperature, ring diameter,
and particle number dependent transition between spin ordered and disordered
Wigner crystals. Due to the small number of particles the transition extends
over a broad temperature range and is clearly identifiable from the electron
pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small
systems see http://www.smallsystems.d
Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring
The effects of electron-electron interaction of a two-electron nanoring on
the energy levels and far-infrared (FIR) spectroscopy have been investigated
based on a model calculation which is performed within the exactly numerical
diagonalization. It is found that the interaction changes the energy spectra
dramatically, and also shows significant influence on the FIR spectroscopy. The
crossings between the lowest spin-singlet and triplet states induced by the
coulomb interaction are clearly revealed. Our results are related to the
experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223
(2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15
Mean parameter model for the Pekar-Fr\"{o}hlich polaron in a multilayered heterostructure
The polaron energy and the effective mass are calculated for an electron
confined in a finite quantum well constructed of
layers. To simplify the study we suggest a model in which parameters of a
medium are averaged over the ground-state wave function. The rectangular and
the Rosen-Morse potential are used as examples.
To describe the confined electron properties explicitly to the second order
of perturbations in powers of the electron-phonon coupling constant we use the
exact energy-dependent Green function for the Rosen-Morse confining potential.
In the case of the rectangular potential, the sum over all intermediate virtual
states is calculated. The comparison is made with the often used leading term
approximation when only the ground-state is taken into account as a virtual
state. It is shown that the results are quite different, so the incorporation
of all virtual states and especially those of the continuous spectrum is
essential.
Our model reproduces the correct three-dimensional asymptotics at both small
and large widths. We obtained a rather monotonous behavior of the polaron
energy as a function of the confining potential width and found a peak of the
effective mass. The comparison is made with theoretical results by other
authors. We found that our model gives practically the same (or very close)
results as the explicit calculations for potential widths .Comment: 12 pages, LaTeX, including 5 PS-figures, subm. to Phys. Rev. B, new
data are discusse
Efficient Auger scattering in Landau-quantized graphene
We present an analytical expression for the differential transmission of a delta-shaped light field in Landauquantized graphene. This enables a direct comparison of experimental spectra to theoretical calculations reflecting the carrier dynamics including all relevant scattering channels. In particular, the relation is used to provide evidence for strong Auger scattering in Landau-quantized graphene
Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)
Using ab initio thermodynamics we compile a phase diagram for the surface of
Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto
ignored polar termination with octahedral iron and oxygen forming a wave-like
structure along the [110]-direction is identified as the lowest energy
configuration over a broad range of oxygen gas-phase conditions. This novel
geometry is confirmed in a x-ray diffraction analysis. The stabilization of the
Fe3O4(001)-surface goes together with dramatic changes in the electronic and
magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure
The Sphingosine-1-phospate receptor 1 mediates S1P action during cardiac development
<p>Abstract</p> <p>Background</p> <p>Sphingosine-1-phosophate (S1P) is a biologically active sphingolipid metabolite that influences cellular events including differentiation, proliferation, and migration. S1P acts through five distinct cell surface receptors designated S1P<sub>1-5</sub>R, with S1P<sub>1</sub>R having the highest expression level in the developing heart. S1P<sub>1</sub>R is critical for vascular maturation, with its loss leading to embryonic death by E14.5; however, its function during early cardiac development is not well known. Our previous studies demonstrated that altered S1P levels adversely affects atrioventricular (AV) canal development <it>in vitro</it>, with reduced levels leading to cell death and elevated levels inhibiting cell migration and endothelial to mesenchymal cell transformation (EMT).</p> <p>Results</p> <p>We determined, by real-time PCR analysis, that S1P<sub>1</sub>R was expressed at least 10-fold higher than other S1P receptors in the developing heart. Immunohistochemical analysis revealed S1P<sub>1</sub>R protein expression in both endothelial and myocardial cells in the developing atrium and ventricle. Using AV canal cultures, we observed that treatment with either FTY720 (an S1P<sub>1,3,4,5</sub>R agonist) or KRP203 (an S1P<sub>1</sub>R-specific agonist) caused similar effects on AV canal cultures as S1P treatment, including induction of cell rounding, inhibition of cell migration, and inhibition of EMT. <it>In vivo</it>, morphological analysis of embryonic hearts at E10.5 revealed that S1P<sub>1</sub>R-/- hearts were malformed with reduced myocardial tissue. In addition to reduced myocardial tissue, E12.5 S1P<sub>1</sub>R-/- hearts had disrupted morphology of the heart wall and trabeculae, with thickened and disorganized outer compact layer and reduced fibronectin (FN) deposition compared to S1P<sub>1</sub>R+/+ littermates. The reduced myocardium was accompanied by a decrease in cell proliferation but not an increase in apoptosis.</p> <p>Conclusions</p> <p>These data indicate that S1P<sub>1</sub>R is the primary mediator of S1P action in AV canal cultures and that loss of S1P<sub>1</sub>R expression <it>in vivo </it>leads to malformed embryonic hearts, in part due to reduced fibronectin expression and reduced cell proliferation.</p
Localized magnetoplasmon modes arising from broken translational symmetry in semiconductor superlattices
The electromagnetic propagator associated with the localized collective
magnetoplasmon excitations in a semiconductor superlattice with broken
translational symmetry, is calculated analytically within linear response
theory. We discuss the properties of these collective excitations in both
radiative and non-radiative regimes of the electromagnetic spectra. We find
that low frequency retarded modes arise when the surface density of carriers at
the symmetry breaking layer is lower than the density at the remaining layers.
Otherwise a doublet of localized, high-frequency magnetoplasmon-like modes
occurs.Comment: Revtex file + separate pdf figure
- …