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ABSTRACT

We present an analytical expression for the differential transmission of a delta-shaped light field in Landau-
quantized graphene. This enables a direct comparison of experimental spectra to theoretical calculations reflect-
ing the carrier dynamics including all relevant scattering channels. In particular, the relation is used to provide
evidence for strong Auger scattering in Landau-quantized graphene.

Keywords: Landau-quantized graphene, Auger scattering, carrier dynamics, differential transmission spec-
troscopy

1. INTRODUCTION

Since its discovery in 2004,1 graphene has attracted an enormous amount of interest2 being considered as a
novel material for optoelectronic devices.3–8 To exploit the fascinating electronic and optical properties of this
atomically thin material, it is of crucial importance to understand the non-equilibrium carrier dynamics. There
has been a lot of research in this field,9–27 revealing that carrier-carrier and carrier-phonon scattering dominate
the ultrafast relaxation dynamics.28,29 Remarkably, Auger scattering – which is generally suppressed in ordinary
semiconductors – turns out to be of particular importance in graphene, where it gives rise to carrier multiplication
occurring at certain experimentally controllable conditions.23,30–33

In an external magnetic field, the electronic properties change dramatically, as the energy is quantized into
non-equidistant Landau levels.34 Unlike in the case without a magnetic field, there are only a few studies of
the carrier dynamics in Landau-quantized graphene.35–41 Here, optical selection rules42 allow the excitation of
specific inter-Landau level transitions opening the possibility to address the carrier dynamics of selected levels in
a pump-probe experiment. Plochocka et al. have investigated the carrier relaxation in highly energetic Landau
levels (with an index n ∼ 100) which was found to be slowed down by the magnetic field as a consequence of the
energy quantization.35 In a more recent joint experiment theory study, we have investigated the carrier dynamics
within the energetically lowest Landau levels.36 Based on a pump probe experiment and microscopic modeling
of the carrier dynamics, we were able to provide evidence for strong Auger-type scattering in Landau-quantized
graphene: Including this scattering channel in the theoretical model, an unexpected behavior in the measured
differential transmission could be explained.

In this Article, we derive the analytic expression that was used in Ref. [36] to compare the experimental
differential transmission spectra (DTS) with the calculations of the Landau level occupations. To this end, we
introduce the Bloch equations for Landau-quantized graphene in Section 2, calculate the absorbance for a delta-
shaped probe pulse in Section 3, and ultimately derive an analytic expresion for the differential transmission in
Section 4.
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2. BLOCH EQUATIONS FOR LANDAU-QUANTIZED GRAPHENE

The many-particle Hamilton operator for charge carriers in Landau-quantized graphene subject to an optical
light field is given by

H =
∑
i

εia
†
iai + i~

∑
i,f

Ωifa
†
fai, (1)

where the first term is the free energy part that is determined by the Landau level dispersion ελn = λvF
√

2~ne0B
which depends on the band index λ = ±1, the Fermi velocity vF ≈ 1 nm/fs,43 the Landau level index n =
0, 1, 2, . . ., the elementary charge e0, and the magnetic field B. The second term describes the carrier-light
coupling expressed through the Rabi frequency Ωif (t) = e0

m0
Mif ·A(t) with the free electron mass m0, the vector

potential A(t), and the optical matrix element38,44

Mif = iδξi,ξf δmi,mf

αniαnf
m0vF

2
√

2~
[
λiε̂
−δnf ,ni−1 + λf ε̂

+δnf ,ni+1

]
= −M∗fi. (2)

Here, ξ = ±1 is the valley index that distinguishes the two equivalent Dirac cones of graphene.34 Furthermore,
m = 0, 1, . . . , L2e0B/(2π~) − 1 is a quantum number expressing the Landau level degeneracy with the area of
graphene L2,34 αn=0 is a constant that can take the values αn=0 =

√
2 and αn6=0 = 1, and ε̂± = (êx ∓ iêy)/

√
2

are Jones vectors describing left (+) and right (−) circularly polarized light.45

The temporal evolution of the microscopic polarization pif (t) = 〈a†fai〉(t) (where a†j and aj are fermionic

creation and annihilation operators of the state j) is obtained using the Heisenberg equation of motion i~ d
dtO(t) =

[O, H] which provides an equation of motion for the operator O.28,46 Using the Hamilton operator from Eq. 1,
this yields

ṗif (t) = (i4ωif − γ) pif (t)− Ω∗if [ρf (t)− ρi(t)] , (3)

with the energy difference ~4ωif = εf − εi, a phenomenologically introduced dephasing γ, and the occupation
probability ρj = pjj in the state j. The dephasing is equivalent to a Landau level broadening and can be caused
by disorder47 or, alternatively by interaction with acoustic phonons.48,49

3. ABSORBANCE OF A DELTA-SHAPED PULSE

For a two-dimensional nanostructure in the linear optics regime, the absorbance reads26,28,29

α±(ω) =
ωImχ±(ω)

c |1 + iωχ±(ω)/2c|2
, (4)

where c is the light velocity and

χ±(ω) =
j±(ω)

ε0ω2A±(ω)
(5)

is the linear optical susceptibility, with the current density j, and the permittivity ε0. The superscript ± denotes
the σ±-circularly polarized components of the respective quantity in the Jones vector basis (ε̂±). The components

A±(ω) =
1

2
√
π

[
A+

0 e
i(ω∓∆ωif )τ +A−0 e

i(ω±∆ωif )τ
]
, (6)

of a δ-shaped probe pulse that is in resonance with the transition i→ f is obtained from

A(t) = δ (t+ τ)

[
A+

0

(
cos4ωif t
sin4ωif t

)
+A−0

(
cos4ωif t
− sin4ωif t

)]
, (7)
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where τ describes the temporal delay of the probe pulse, and A±0 are the amplitudes of the left (+) and right
(−) circularly polarized contributions. The current density is given by28

j±(ω) = −i ~e0
2m0L2

∑
if

[
M±ifpif (ω) +M±fipfi(ω)

]
. (8)

where a term proportional to A± was neglected. Using the substitution pif = protif e
i4ωif t, we transform Eq. 3

to the rotating frame
ṗrotif (t) = −γprotif (t)− Ω∗if [ρf (t)− ρi(t)] e−i4ωif t, (9)

and obtain its Fourier transform (FT) exploiting the relation FT
[
ṗrotif (t)

]
= iωprotif (ω)

protif (ω) = δξi,ξf δmi,mf

e0vF
4~

αniαnf

(
λiδnf ,ni−1A

−
0 + λfδnf ,ni+1A

+
0

) FT [δ (t− τ) (ρf − ρi)] (ω)

ω − iγ
. (10)

Here, the rotating wave approximation (RWA) was applied by omitting terms e±i24ωif t in comparison to 1.
Since the symmetry relation p∗if = pfi effects an inverse rotation of pfi compared to pif , cf. pfi = protfi e

−i4ωif t,

the RWA for protfi (ω) is not obtained by exchanging i ↔ f in Eq. 10, but the relation protfi (ω) = −protif (ω) must
be used instead. Exploiting the convolution theorem, we can write

FT [δ (t+ τ) (ρf − ρi)] = FT [δ (t− τ)] ∗ FT [ρf − ρi]

=
1

2π
eiωτ [ρf (τ)− ρi(τ)] . (11)

where ∗ denotes the convolution of two functions f and g: (f ∗ g)(ω) =
´∞
−∞ dω′f(ω′)g(ω− ω′), Using Eqs. 2, 8,

10, 11, as well as the relations pif (ω) = protif (ω−4ωif ) and pfi(ω) = −protif (ω+4ωif ), the current density reads

j±(ω) =
e30v

2
FB

64π2~2
∑
if

(
αniαnf

)2
[ρf (τ)− ρi(τ)]

[
A±0 δnf ,ni±1

ei(ω−∆ωif )τ

ω −∆ωif − iγimp
if

−A∓0 δnf ,ni∓1
ei(ω+∆ωif )τ

ω +∆ωif − iγimp
if

]
(12)

Here, we performed the summations over the valley and m degrees of freedom. In due consideration of the
Kronecker deltas δξi,ξf δmi,mf

in Eq. 10 this yields a factor of L2e0B/(π~). Omitting terms with a non vanishing
rotation eiω̃τ 6= 1, we obtain the linear optical susceptibility (Eq. 5) using the Eqs. 6 and 12

χ±(ω) =

√
πe30v

2
FB

32π2~2ε0ω2

∑
if

(
αniαnf

)2 ρf (τ)− ρi(τ)

ω −∆ωif − iγimp
if

δnf ,ni±1. (13)

Neglecting the term iωχ(ω)/2c in the denominator of Eq. 4 which is usually small, we find the final expression
for the absorbance of a delta-shaped pulse

α±(ω) =

√
πe30v

2
FB

32π2~2ε0cω
∑
if

(
αni

αnf

)2
[ρf (τ)− ρi(τ)]

γ

(ω −∆ωif )
2

+ γ2
δnf ,ni±1. (14)

4. DIFFERENTIAL TRANSMISSION

The idea of the differential transmission spectroscopy is to optically excite the system under investigation using
a strong pump pulse. Then, the differential transmission of a much weaker probe pulse incident after a certain
time delay τ is measured. Based on the assumption that the occupations of the system are not affected by
the weak probe pulse, the differential transmission allows to draw conclusions about the carrier dynamics in
the system. Omitting possible interference between both pulses, which can lead to the emergence of a so-called
coherent artifact, the ansatz

DTS(ω, τ) = αpump(ω, τ)− α0(ω) (15)
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Figure 1. Differential transmission spectrum pumping and probing with linear polarized radiation and an energy matching
the inter-Landau level transitions LL0 → LL+1 and LL−1 → LL0 at B = 4 T. The yellow area in the background represents
the pump pulse centered around t = 0.

for the differential transmission is used, where αpump (α0) is the absorbance of the probe pulse with (without) a
previous pump pulse. Assuming a pump pulse centered around t = 0, the initial absorbance of the probe pulse
is given by α0(ω) = α(ω, τ = −∞), while the absorbance of the probe pulse following the pump pulse after a
time τ is simply given by αpump(ω, τ) = α(ω, τ). Thereby, using Eq. 14, the DTS for a single transition i → f
and a resonant excitation (ω = ∆ωif ) reads

DTS±if (τ) =

√
πe20v

2
F

32π2~ε0cl2B∆ωifγ
(
αni

αnf

)2
[∆ρf (τ)−∆ρi(τ)] δnf ,ni±1, (16)

where ∆ρj(τ) = ρj(τ) − ρj(t = −∞) is the occupation difference induced by the pump pulse. Note that (in
RWA) σ+-polarized radiation is only capable of exciting transitions where the Landau level index is incremented
by one n → n + 1, while transitions with n → n − 1 require σ−-polarized radiation (cf. δnf ,ni±1 in Eq. 16,
respectively). When more than one transition is addressed by the probe pulse at the same time, the DTS is given
by the sum of the individual spectra (cf. sum over i and f in Eq. 14). Therefore, the DTS pumping and probing
the inter-Landau level transitions LL0 → LL+1 and LL−1 → LL0 is given by DTS+

0→+1(τ) + DTS−−1→0(τ) which
is proportional to (∆ρ+1 −∆ρ−1). An example of such a calculated DTS for a linear polarized excitation of the
energetically lowest Landau levels is shown in Fig. 1, where an increase during the optical excitation reflects
the enhanced Pauli blocking induced by the pumping (absorption bleaching), and the decay results from the
many-particle-induced relaxation back to the equilibrium distribution. Investigating the decay behavior (mono-
or multi-exponential) and the decay rate allows conclusions on the relaxation channels and their efficiency.

5. CONCLUSION

We have presented the derivation of the relation between the differential transmission accessible in pump-probe
experiments and the occupation probabilities of Landau-quantized graphene. The obtained analytic expression
shows that the differential transmission is proportional to the difference between the pump-induced occupation
change in the final and the initial state.

ACKNOWLEDGMENTS

We acknowledge financial support from the Deutsche Forschungsgemeinschaft through SPP 1459. Furthermore,
E. M. is thankful to the Swedish Research Council (VR).

Proc. of SPIE Vol. 9361  936105-4



[2] Geim, A. K. and Novoselov, K. S., “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[3] Geim, A. K., “Graphene: Status and Prospects,” Science 324, 1530–1534 (2009).

[4] Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A., and Avouris, P., “Ultrafast graphene photodetector,”
Nature Nano. 4(12), 839–843 (2009).

[5] Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., “Graphene photonics and optoelectronics,” Nature
Photon. 4, 611–622 (2010).

[6] Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M., and Ferrari,
A. C., “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010).

[7] Avouris, P. and Dimitrakopoulos, C., “Graphene: synthesis and applications,” Mater. Today 15(3), 86 – 97
(2012).

[8] Gan, X., Shiue, R.-J., Gao, Y., Meric, I., Heinz, T. F., Shepard, K., Hone, J., Assefa, S., and Englund, D.,
“Chip-integrated ultrafast graphene photodetector with high responsivity,” Nature Photon. 7(11), 883–887
(2013).

[9] Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C., and Wolf, M., “Strongly Coupled Optical Phonons
in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite,” Phys. Rev.
Lett. 95, 187403 (2005).

[10] Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F., and Spencer, M. G., “Measurement of
ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).

[11] Sun, D., Wu, Z.-K., Divin, C., Li, X., Berger, C., de Heer, W. A., First, P. N., and Norris, T. B., “Ultra-
fast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission
Spectroscopy,” Phys. Rev. Lett. 101, 157402 (2008).

[12] Rana, F., George, P. A., Strait, J. H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer,
M. G., “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in
graphene,” Phys. Rev. B 79, 115447 (2009).

[13] Winnerl, S., Orlita, M., Plochocka, P., Kossacki, P., Potemski, M., Winzer, T., Malic, E., Knorr, A.,
Sprinkle, M., Berger, C., de Heer, W. A., Schneider, H., and Helm, M., “Carrier Relaxation in Epitaxial
Graphene Photoexcited Near the Dirac Point,” Phys. Rev. Lett. 107, 237401 (2011).
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