104 research outputs found

    Fluid driven transition from damage to fracture in anisotropic porous media - a multiscale XFEM approach

    Get PDF
    Copyright © 2019 SpringerIn this paper, a numerical method is proposed to simulate multiscale fracture propagation driven by fluid injection in transversely isotropic porous media. Intrinsic anisotropy is accounted for at the continuum scale, by using a damage model in which two equivalent strains are defined to distinguish mechanical behavior in the direction parallel and perpendicular to the layer. Nonlocal equivalent strains are calculated by integration, and are directly introduced in the damage evolution law. When the weighted damage exceeds a certain threshold, the transition from continuum damage to cohesive fracture is performed by dynamically inserting cohesive segments. Diffusion equations are used to model fluid flow inside the porous matrix and within the macro fracture, in which conductivity is obtained by Darcy's law and the cubic law, respectively. In the fractured elements, the displacement and pore pressure fields are discretized by using the XFEM technique. Interpolation on fracture elements is enriched with jump functions for displacements, and with level-set-based distance functions for fluid pressure, which ensures that displacements are discontinuous across the fracture, but that the pressure field remains continuous. After spatial and temporal discretization, the model is implemented in a Matlab code. Simulations are carried out in plane strain. The results validate the formulation and implementation of the proposed model, and further demonstrate that it can account for material and stress anisotropy

    An energy-efficient and secure data inference framework for internet of health things: A pilot study

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Privacy protection in electronic healthcare applications is an important consideration, due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks that are used within a healthcare setting have unique challenges and security requirements (integrity, authentication, privacy, and availability) that must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This poses certain restrictions on the practical implementation of these devices. In order to address these issues, this paper proposes a privacy-preserving two-tier data inference framework solution that conserves battery consumption by inferring the sensed data and reducing data size for transmission, while also protecting sensitive data from leakage to adversaries. The results from experimental evaluations on efficiency and privacy show the validity of the proposed scheme, as well as significant data savings without compromising data transmission accuracy, which contributes to energy efficiency of IoHT sensor devices

    No soldiers left behind: An IoT-based low-power military mobile health system design

    Get PDF
    © 2013 IEEE. There has been an increasing prevalence of ad-hoc networks for various purposes and applications. These include Low Power Wide Area Networks (LPWAN) and Wireless Body Area Networks (WBAN) which have emerging applications in health monitoring as well as user location tracking in emergency settings. Further applications can include real-Time actuation of IoT equipment, and activation of emergency alarms through the inference of a user\u27s situation using sensors and personal devices through a LPWAN. This has potential benefits for military networks and applications regarding the health of soldiers and field personnel during a mission. Due to the wireless nature of ad-hoc network devices, it is crucial to conserve battery power for sensors and equipment which transmit data to a central server. An inference system can be applied to devices to reduce data size for transfer and subsequently reduce battery consumption, however this could result in compromising accuracy. This paper presents a framework for secure automated messaging and data fusion as a solution to address the challenges of requiring data size reduction whilst maintaining a satisfactory accuracy rate. A Multilayer Inference System (MIS) was used to conserve the battery power of devices such as wearables and sensor devices. The results for this system showed a data reduction of 97.9% whilst maintaining satisfactory accuracy against existing single layer inference methods. Authentication accuracy can be further enhanced with additional biometrics and health data information

    Multiscale Shear Properties and Flow Performance of Milled Woody Biomass

    Get PDF
    One dominant challenge facing the development of biorefineries is achieving consistent system throughput with highly variant biomass feedstock quality and handling performance. Current handling unit operations are adapted from other sectors (primarily agriculture), where some simplifying assumptions about granular mechanics and flow performance do not translate well to a highly compressible and anisotropic material with nonlinear time- and stress-dependent properties. This work explores the shear and frictional properties of loblolly pine at multiple experimental test apparatus and particle scales to elucidate a property window that defines the shear behavior over a range of material attributes (particle size, size distribution, moisture content, etc.). In general, it was observed that the bulk internal friction and apparent cohesion depend strongly on both the stress state of the sample in granular shear testers and the overall particle size and distribution span. For equipment designed to characterize the quasi-static shear stress failure of bulk materials ranging from 50 to 1,000 ml in test volume, similar test results were observed for finely milled particles (50% passing size of 1.4 mm) with a narrow size distribution (span between 10 and 90% passing size of 0.9 mm), while stress chaining and over-torque issues persisted for the bench-scale test apparatus for larger particle sizes or widely dispersed sample sizes. Measurement of the anisotropic particle–particle friction ranged from coefficients of approximately 0.20 to 0.45 and resulted in significantly higher and more variable friction measurements for larger particle sizes and in perpendicular alignment orientations. To supplement these laboratory-scale properties, this work explores the flow of loblolly pine and Douglas fir through a pilot-scale wedge-shaped hopper and a screw feeder. For the gravity-driven hopper flow, the critical arching distance and mass discharge rate ranged from approximately 10 to 30 mm and 2 to 16 tons/hour, respectively, for both materials, where the arching distance depends strongly on the overall particle size and depends less on the hopper inclination angle. Comparatively, the auger feeder was found to be much more impacted by the size of the particles, where smaller particles had a more consistent and stable flow while consuming less power

    Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules

    Get PDF
    Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe

    Micromechanics based discrete damage model with multiple non-smooth yield surfaces: theoretical formulation, numerical implementation and engineering applications

    Get PDF
    Author's post-print accepted for publication.The discrete damage model presented in this paper accounts for 42 non-interacting crack microplanes directions. At the scale of the Representative Volume Element (RVE), the free enthalpy is the sum of the elastic energy stored in the non-damaged bulk material and in the displacement jumps at crack faces. Closed cracks propagate in pure mode II, whereas open cracks propagate in mixed mode (I/II). The elastic domain is at the intersection of the yield surfaces of the activated crack families, and thus describes a non-smooth surface. In order to solve for the 42 crack densities, a Closest Point Projection algorithm is adopted locally. The RVE inelastic strain is calculated iteratively, by using Newton-Raphson method. The proposed damage model was rigorously calibrated for both compressive and tensile stress paths. FEM simulations of triaxial compression tests showed that the transition between brittle and ductile behavior at increasing confining pressure can be captured. The cracks’ density, orientation and location predicted in the simulations are in agreement with experimental observations made during compression and tension tests, and accurately show the difference between tensile and compressive strength. Plane stress tension tests simulated for a fiber-reinforced brittle material also demonstrated that the model can be used to interpret crack patterns, design composite structures and recommend reparation techniques for structural elements subjected to multiple damage mechanisms
    corecore