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Abstract In this paper, a numerical method is proposed to simulate multiscale
fracture propagation driven by fluid injection in transversely isotropic porous me-
dia. Intrinsic anisotropy is accounted for at the continuum scale, by using a damage
model in which two equivalent strains are defined to distinguish mechanical be-
havior in the direction parallel and perpendicular to the layer. Nonlocal equivalent
strains are calculated by integration, and are directly introduced in the damage
evolution law. When the weighted damage exceeds a certain threshold, the tran-
sition from continuum damage to cohesive fracture is performed by dynamically
inserting cohesive segments. Diffusion equations are used to model fluid flow inside
the porous matrix and within the macro fracture, in which conductivity is obtained
by Darcy’s law and the cubic law, respectively. In the fractured elements, the dis-
placement and pore pressure fields are discretized by using the XFEM technique.
Interpolation on fracture elements is enriched with jump functions for displace-
ments, and with level-set-based distance functions for fluid pressure, which ensures
that displacements are discontinuous across the fracture, but that the pressure field
remains continuous. After spatial and temporal discretization, the model is imple-
mented in a Matlab code. Simulations are carried out in plane strain. The results
validate the formulation and implementation of the proposed model, and further
demonstrate that it can account for material and stress anisotropy.
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Chloé Arson
School of Civil and Environmental Engineering, Georgia Institute of Technology, GA, USA
E-mail: chloe.arson@ce.gatech.edu



2 Wencheng Jin, Chloé Arson

1 Introduction

The study of damage and fracture in brittle solids has numerous engineering appli-
cations, such as aerospace metal optimization, construction design and hydraulic
fracturing techniques used in the oil and gas industry. Hydraulic fracturing is used
to stimulate well production, both in regular and tight formations. It is a complex
process that involves host rock deformation, fracture propagation, fluid flow and
fluid leak-off. Solving the problem of hydraulic fracturing either analytically or
numerically is still very challenging because of the nonlinear, history dependent
fluid flow with moving boundary conditions, and also because of the anisotropic
nonlinear behavior of the host rock.

Pioneering work on hydraulic fracturing dates back from the 1950s [78,36,50].
Classical solutions are based on the so-called PKN and KDG models. In 1961,
Perkins and Kern [68] used the theory of elasticity to solve for the fracture width
w and the fluid pressure p along the fracture length l in plane strain conditions,
in which the fracture height h was constant. Later, Nordgren [60] improved the
model by accounting for the fluid leak-off into the surrounding rock matrix (hence
the name, PKN model). By further assuming that the width of the fracture w
is constant in the direction perpendicular to the fracture plane, Khristianvic and
Zheltov [50], and Geertsma and De Klerk [32] independently developed another set
of analytical solutions for hydraulic fracturing - the so-called KGD model. Spence
and Sharp [80] extended the KGD model with self-similar relations (power law
relations between the cavity volume and the injection time), and they accounted
for rock toughness. In addition to the plane strain models, analytical solutions for
the radial or penny-shaped fracture growth under constant fluid injection pressure
was obtained by Sneddon [78], and later extended to elliptical fracture growth
[36]. The penny-shaped fracture growth model was further applied to hot, dry
rock [2,1]. Note that by invoking scaling laws, Detournay [17] found that there
are three competing energy dissipation mechanisms that control the process of
hydraulic fracturing, depending on the value of the fracture toughness, the fluid
viscosity and the leak-off term. Based on Detournay’s analyses, numerous semi-
analytical solutions were developed for plane strain conditions [3,4,29,27,28,38]
and for penny-shaped fractures [72,7,8]. These solutions, based on a variety of gov-
erning laws for fluid rheology (viscosity), fluid flow in the matrix (leak-off), and
rock toughness, are important tools to understand hydraulic fracture propagation
regimes. As pointed out by Detournay and Peirce [18], the analytical solutions
reviewed above were all obtained with ad hoc assumptions, and did not properly
account for the boundary conditions at the tip and near the tip. To address these
limitations, a number of studies were carried out to find analytical solutions for
the singularity of the tip and to predict the limiting propagation regimes, such as
the toughness dominated regime (index k), the leak-off dominated regime (index
m̃), and the viscous dominated regime (index m). The m−vertex solution was ex-
plained by Desroches et al. [16] for the zero-toughness and impermeable case, the
m̃−vertex solution was presented by Lenoach [53] for the zero-toughness and leak-
off dominated case, and the k−vertex solution was obtained from Linear Elastic
Fracture Mechanics (LEFM) asymptotes. In the general case, fracture propaga-
tion may evolve within the parametric space of the three limiting cases. Recently,
Garagash et al. [30], Dontsov and Peirce [20] obtained the universal tip asymptotic
solution that can be used for any location in the parametric space.



Multiscale Hydraulic Fracturing 3

Analytical solutions were used for industry applications at the inception of
hydraulic fracturing. However, the overly constraining assumptions limit their ap-
plication. So-called pseudo-3D (P3D) models were the first numerical simulators
developed to relax those constraints. Numerical P3D models are still based on
the assumption that a vertical plane fracture propagates in a homogeneous rock
formation, but fracture height growth is accounted for. In lumped P3D models,
fractures are assumed to be ellipsoids [55]. In cell-based P3D models, fractures are
regarded as connected rectangular elements [74,61]. The latest P3D models include
the stacked height [11] and the enhanced [19] models. The planar 3D numerical
models (PL3D) were proposed to account for the variation of elasticity, toughness
and confining pressure across formation layers [84,67,75,5], which relaxes analyt-
ical constraints even further. Either the adaptive mesh method or the structured
mesh enhanced with level set method is used to obtain the dynamic planar frac-
ture footprint. The two dimensional fluid flow as well as the elastic equilibrium are
considered. The PL3D model significantly increases the accuracy of the hydraulic
fracturing model, but also increases dramatically its computational cost.

In the past years, research on hydraulic fracturing modeling focused on three
major objectives. The first one is to reduce the computational cost while maintain-
ing solution accuracy in P3D and PL3D models, by incorporating the tip asymp-
totic solutions [21,66,22] into the simulation code. The second is to relax the
constraints of the P3D and PL3D models, by considering non-planar fracture ge-
ometries [37,9], by simulating the simultaneous propagation of multiple hydraulic
fractures [21,83], and by incorporating the interaction with natural fractures [48,
46,51]. To meet these two first objectives, the force equilibrium in elastic forma-
tion, the mass balance equation for the fluid with leak-off, and the propagation
of fracture tip are accounted for. However, the process of fluid flow within the
porous matrix, as well as the nonlinear rock deformation and the cohesive frac-
ture propagation are ignored. The third objective is thus to incorporate these
physical processes by employing advanced numerical methods, such as interface
elements [10], the eXtended Finite Element Method (XFEM) [24] and the phase
field method [56].

The XFEM allows simulating fracture propagation in arbitrary directions ex-
plicitly, without re-meshing. The XFEM was used extensively in the last decade to
simulate hydraulic fracturing. For instance, considering an impermeable matrix,
Gordeliy and Peirce [33,34,35] investigated the enrichment strategy, the coupling
scheme, and the convergence of the XFEM hydraulic fracturing models. Dontsov
and Peirce [21] later enriched the fracture tip with a universal tip asymptotic solu-
tion to account for all possible cases in the toughness/viscosity/leak-off dominated
regimes. Considering a fully saturated matrix, De Borst et al. [15] pioneered the
formulation of XFEM models for stationary fractures. Afterwards, fracture prop-
agation in saturated porous media was simulated using XFEM-cohesive segments
[59,49,69,57], in which different enrichment functions were adopted to represent
the pore pressure distribution across the fracture. This idea was further extended
to model the propagation of multiple fluid-driven fractures [83] and to model the in-
tersection with natural fractures [47]. Considering a partially unsaturated matrix,
Salimzadeh and Khalili [71] employed the XFEM to model hydraulic fracturing in
a three-phase system.

The numerical methods reviewed above for modeling hydraulic fracturing have
addressed a wide range of challenges and have significant value; however, some
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assumptions on host rock deformation and fracture propagation are overly sim-
plified. As explained in [45,77,12,14,85], quasi-brittle materials fail following two
stages: diffused damage inception followed by extensive damage localization lead-
ing to macro-fracture propagation. The singularity at the fracture tip from LEFM
does not exist physically, and the cohesive segment concept by which the diffuse
damage process zone is condensed into a surface or line was never assessed for its
accurate representation of fracture propagation. In addition, most of reservoir sed-
imentary host rocks (e.g. shale) behave anisotropically [73,54]. The propagation
direction of fluid-driven fractures remains as a puzzle when material anisotropy
and stress anisotropy compete.

In this paper, we thus propose a numerical scheme to predict multi-scale hy-
draulic fracture propagation in transversely isotropic porous materials based on
the XFEM. To capture the two-stage fracture propagation process, we a cou-
ple nonlocal damage model with a cohesive zone method, following the methods
previously presented by the authors [42]. We first present the strong and weak
forms of the governing equations of the problem of hydraulic fracturing in sat-
urated porous media, in Section 2. We detail the momentum balance equations
for the solid and fluid phases as well as the mass balance equations for the fluid
phase inside the solid skeleton and inside the fracture. Constitutive equations in-
clude a nonlocal anisotropic damage model (for the deformation and damage of
the porous matrix), the Park-Paulino-Roesler (PPR) cohesive model (for fracture
propagation), Darcy’s law (for fluid flow in the solid matrix) and the cubic law
(for fluid flow within the fractures). In Section 3, we present the XFEM used for
space discretization and the finite difference method used for time discretization. A
Newton-Raphson iterative scheme is employed to solve the global nonlinear system
of equations. In Section 4, we first validate the formulation and implementation
of the computational model by simulating the Khristianovic-Geertsma-de Klerk
(KGD) problem; we then conduct parametric studies in plane strain conditions to
understand the mechanisms that control fracture path formation in the presence
of both material and stress anisotropy.

2 Coupled Hydro-Mechanical Governing Equations for Saturated
Porous Media with Intrinsic Transverse Isotropy

2.1 Strong formulation

Hydraulic fracturing in porous media is a complex problem, which involves coupled
physical processes that happen simultaneously, mainly: micro-crack propagation
and coalescence in the solid porous matrix; fluid flow through the porous medium;
fluid flow within the macro-fracture; fluid exchange between the porous matrix and
the fracture. Correspondingly, the governing equations required to model these
processes shall include: momentum balance equations and constitutive laws for
predicting the deformation field, micro crack development in the solid matrix and
the propagation of macro fractures; fluid mass balance equation and fluid transport
constitutive equation, both in the solid matrix and in the macro-fracture.

We start with the classical Biot theory [6] to describe the mechanical behavior
of elastic porous media saturated with a single-phase fluid. Following Dormieux’s
approach [23], we consider that the development of micro-cracks (damage) will
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have a direct influence on elasticity parameters and on porosity. For the sake of
simplicity, we assume that damage development (i.e., the initiation and propaga-
tion of micro cracks) does not generate inelastic deformation, i.e., damage only
affects the stiffness tensor. Porosity and permeability are affected indirectly by
damage, through the expression of Biot’s effective stress. Consequently, the poten-
tial energy density of a Representative Elementary Volume (REV) of transversely
isotropic porous material can be expressed as:

Hs(ε, p,ω) =
1

2
ε : C(ω) : ε− p2

2N
− pα : ε (1)

where Hs is also called Helmholtz free energy, ε is the strain tensor, p is the
fluid pressure, ω stands for the damage variable, C is the elastoplastic stiffness
tensor, and αij = −∂2Hs/∂εij∂p is Biot’s coefficient tensor. α linearly relates
the porosity change to the strain variation when pressure is held constant (p = 0).
Due to Maxwell’s symmetry [13], α also linearly relates the stress increment to the
pressure increment when strain is held constant (ε = 0). 1/N = −∂2Hs/∂p2 is the
inverse of Biot’s skeleton modulus, linking pressure variation dp with the porosity
variation when strain is held constant (ε = 0). According to the thermodynamic
conjugation relationships, the Biot’s effective stress tensor σ and the porosity φ
can be expressed in following state equations:

σ =
∂Hs
∂ε

= C(ω) : ε− αp

φ− φ0 = −∂Hs
∂p

= α : ε+
p

N

(2)

where φ0 is the initial porosity.

Mixture governing equations
Under quasi-static conditions, the momentum balance equation of the REV (made
of the mixture solid + fluid) is:

∇ · σ + ρg = 0. (3)

where ρ is the average mass density of the mixture, defined as ρ = (1 − φ)ρs +
φρf , in which ρs (respectively ρf ) stands for the mass density of the solid phase
(respectively, density of the fluid phase). g is the body force vector. Substituting
the state equation 2 into equation 3, we get the strong form of the governing
equation for the mixture, as follows:

∇ · [C(ω) : ε− αp] + ρg = 0 (4)

Fluid governing equations in the saturated porous matrix
Fluid flow inside the porous matrix is fundamentally governed by the fluid mass
balance equation, which expresses that the mass change within the considered
REV should be equal to the difference between the fluid mass flowing out the
REV and the fluid mass flowing in the REV, as follows:

∇ · (ρfv) +
∂mf

∂t
= 0 (5)
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where v is the velocity vector of the fluid. ρf and mf represent the mass density
and the mass of the fluid, respectively. Since the porous medium is saturated with
the fluid, we have: mf = ρfφ, where φ is the porosity. According to the state
equation of the fluid, the mass density of the fluid is related to the pore pressure
through the following equation:

dρf
ρf

=
dp

Kf
(6)

where Kf is the bulk modulus of the fluid. We assume that fluid flow inside the
porous matrix is laminar and that it is governed by Darcy’s seepage equation as:

v = −km
µ

(∇p− ρfg) (7)

where µ is the dynamic viscosity of the fluid, km is the intrinsic anisotropic per-
meability tensor of the solid skeleton. For simplicity, we assume that permeability
remains constant in this paper. Note that future developments are necessary to
account for the dependence of permeability to the geometry and connectivity of
pores and cracks within the solid skeleton. By substituting the state equations (eq.
2 and 6), the Darcy’s law (eq. 7) into equation 5, we get the governing equation
for the fluid flow through the permeable porous medium surrounding the fracture,
as follows:

α :
∂ε

∂t
+

1

M

∂p

∂t
= ∇ · km

µ
(∇p− ρfg), (8)

where it is assumed that the spatial variability of the fluid mass density is negligible
(i.e. ∇ρf 6= 0). M is the so called Biot’s modulus, defined by

1

M
=

1

N
+

φ

Kf
. (9)

Fluid governing equations along the fracture
Different from the fluid flow inside the porous matrix, the mass balance equation
that governs the fluid flow inside the fracture involves a direction-dependent hy-
draulic conductivity. Consider a plane strain REV such that a face of the REV is
a unit fracture surface, as sketched in Fig. 1. The local fracture width is noted w
(perpendicular to fracture faces). The fluid mass change per unit of time within
the REV is equal to the variation of flow rate in the direction of the fracture
plane, plus the variation of flow rate in the direction perpendicular to the fracture
surfaces. The mass balance equation is thus expressed as:

∇s · [ρfq(s)] + [[ρfv(s)]] · nΓd
+
∂

∂t
(ρfw) = 0. (10)

where ∇s represents the gradient in the tangent direction of the local fracture
surface, in which s denotes the natural coordinate of the fracture. q is the flow
rate inside the fracture. Accordingly, the first term represents the change of fluid
mass due to a flow rate variation within the fracture. The velocity v is related
to the flow in the matrix and can be discontinuous at the two fracture surfaces:
v+ 6= v−. We note [[v(s)]] the velocity jump across the fracture. After multiplying
by the normal direction of the fracture surfaces nΓd

and the fluid density ρf , the
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s

Natural Coordinate

Flow rate

v-

v+

Fluid Velocity

q(s2)q(s1) w(s)

REV

Γd
n

Fig. 1 Sketch of a unit plane strain REV for fluid flow along the fracture. s is the natural
coordinate along fracture surface, q(s) is the flow rate across the fracture width w at s, v is
the fluid velocity inside matrix, and nΓd

is the unit normal direction of the fracture.

second term represents the amount of fluid exchanged between the matrix and the
fracture.

The flow rate q is typically computed by the integral of the velocity over the
thickness of the fracture. It can vary with the location s of the point on the
fracture surface and it is related to the pressure gradient in the fracture surface
by the following law:

q(s) = −c(s)(∇sp(s)− ρfg) = −w
3(s)

12µ
(∇sp(s)− ρfg) (11)

where c(s) is the hydraulic conductivity of the fracture at the natural coordinate
s. Here, we use Poiseuille fluid flow equation and accordingly, we calcualte c(s)
from the cubic law.

By substituting the constitutive law (eq. 11) and the state equation (eq. 6) into
equation 10, we get the governing equation for the fluid flow within the fracture,
as follows:

[[v(s)]] · nΓd
+
∂w(s)

∂t
+
w(s)

Kf

∂p(s)

∂t
= ∇s ·

[
w3(s)

12µ
(∇sp(s)− ρfg)

]
. (12)

Since ε and w can be both expressed in terms of the displacement field in the
solid skeleton and of the fluid pressure, the unknowns in equations 4, 8, and 12
can all be related to u and p. Thus, these governing equations are usually referred
to as the u− p formulation.
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Γ

Γp

pΓu

u

Γq

q

Γt

t

+

-

Ω

Qin

Γd

nΓd
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nΓd
-

nΓd

w mΓd

td
+
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-

Damage zone

φ>0

φ<0

Γd

Cohesive traction
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Flow rate

Fluid Pressure

Displacement
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t

q

p

u

Γ Exterior boundary

Qin Injection rate

w
nΓd Fracture normal

Fracture tangentmΓd

td

Γd Interior fracture boundary

φ Level set value

Fig. 2 Boundary conditions on a domain Ω that contains a discontinuity Γd. Ω is subjected
to boundary conditions, as follows: Γu (respectively, Γp) is subjected to displacement ū (re-
spectively, pore pressure p̄); and Γt (respectively, Γq) is subjected to traction t̄ (respectively,
fluid flux q̄). Γu∪Γt = Γ and Γu∩Γt = ∅ hold for the solid phase, Γp∪Γq = Γ and Γp∩Γq = ∅
hold for the fluid phase. The discontinuity Γd is treated as an interior boundary with a positive
surface Γ+

d and a negative surface Γ−d , subjected to cohesive traction t+d and t−d , respectively.
Unit normal vectors are noted n

Γ+
d

and n
Γ−
d

for the positive and negative fracture surface,

respectively. Note that the level set function φ is defined so as that it is positive on the side of
the domain that contains Γ+

d , and negative on the side of the domain that contains Γ−d .

2.2 Weak formulation

In order to obtain the weak formulation of the problem from its strong formu-
lation, it is necessary to define the essential and natural boundary conditions at
the exterior and interior boundaries of the domain. In this chapter, we focus on
two-dimensional problems, as described in Figure 2. The domain Ω with exterior
boundary Γ has a discontinuity Γd, which is treated as an interior boundary and
may evolve due to fluid pressurization. The two surfaces of the discontinuity Γd
are noted Γ+

d and Γ−d . We note nΓd
the unit normal vector on the fracture surface,

pointing towards Ω+, i.e. (nΓd
= nΓ−

d
= −nΓ+

d
).

As shown in Figure 2, the essential boundary conditions (respectively, natural
boundary conditions) are imposed on the external boundary of the domain by the
prescribing the primary variables ū and p̄ (respectively, the secondary variables,
traction t̄ and fluid outflow rate q̄), as follows:

u = ū on Γu

p = p̄ on Γp
(13)
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and

σ · nΓ = t̄ on Γt

v · nΓ = q̄ on Γq
(14)

where nΓ is the unit outward normal vector to the external boundary Γ . Note:
Γu ∪ Γt = Γ and Γu ∩ Γt = ∅ hold for the solid phase, and Γp ∪ Γq = Γ and
Γp ∩ Γq = ∅ hold for the fluid phase.

From a physics perspective, the existence of the fracture Γd in the domain Ω
leads to a hydro-mechanical coupling between the fracture and the bounding ma-
trix. Fluid flow along the fracture exerts pressure on the two fracture surfaces and
pushes them apart, while the two surfaces transmit cohesive traction. Reversely,
pressure gradients drive fluid flow into/out of the bounding matrix surrounding
the fracture. Thus, the essential and natural boundary conditions at the interior
boundary Γd are expressed as

σ · nΓd
= td − pnΓd

on Γd

(v+ − v−) · nΓd
= [[v]] · nΓd

= qd on Γd
(15)

where td is the cohesive traction which governs the mechanical behavior of the
macro fracture once the fracture is initiated. In this paper, we employ the potential
based PPR [65] cohesive model detailed in Section 2.4. Moreover, qd represents
the fluid flow into the matrix, i.e. leak-off in the fracture flow model.

For the hydraulic fracturing problem, an additional boundary conditions needs
to be specified at the fracture tip and at the fracture mouth (i.e., at the intersec-
tion point between the domain surface Γ and the fracture Γd). In typical field
operations, a fluid injection rate Qin is applied at the fracture mouth (s = 0) and
a zero flux is applied at the fracture tip (s = smax):

q|s=0 = Qin, q|s=smax = 0, on ∂Γd (16)

We first obtain the weak form of the mixture governing equation by multiplying
equation 4 with a virtual displacement δu, and by integrating over the whole
domain Ω. After applying the divergence theorem and the boundary conditions,
we have:∫

Ω

∇sδu :C(ω) : ∇sudΩ −
∫
Ω

∇sδu : αpdΩ

+

∫
Γd

δ[[u]] · (td − pnΓd
)dΓ =

∫
Γt

δu · t̄dΓ +

∫
Ω

ρδu · gdΩ
(17)

where the kinematic strain-displacement relation ∇su = ε is used. We use ∇s
to denote the symmetric part of the gradient operator. Note that Ritz method is
adopted, in which the interpolation functions (shape functions) used to approxi-
mate the displacement field also serve as weight functions to calculate the weighted
integral residuals. In order to ensure that the above equation holds for all admis-
sible solutions of displacement, the virtual displacement must satisfy the essential
boundary condition δu|Γu

= 0. It is worth noting that the mechanical coupling
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term comes from the boundary condition along the fracture surfaces Γd, derived
as follows:

−
∫
Γ+

d

δu · (σ · nΓ+
d

)dΓ −
∫
Γ−

d

δu · (σ · nΓ−
d

)dΓ =

∫
Γd

(δu+ − δu−) · (σ · nΓd
)dΓ

=

∫
Γd

δ[[u]] · (td − pnΓd
)dΓ

(18)

We recall that (nΓd
= nΓ−

d
= −nΓ+

d
).

Similarly, we can obtain the weak form of the governing equation of the fluid
flowing in the matrix (eq. 8), as follows:∫

Ω

δp
1

M

∂p

∂t
dΩ +

∫
Ω

δpα : ∇s ∂u
∂t
dΩ +

∫
Ω

∇δp · (km
µ
∇p)dΩ

−
∫
Γd

δpqddΓ = −
∫
Γq

δpq̄dΓ +

∫
Ω

ρfkm
µ
∇δp · gdΩ

(19)

Note that δp is the virtual pressure that satisfies δp|Γp
= 0. The boundary condi-

tion km

µ (−∇p+ ρfg) ·nΓ = v ·nΓ = q̄ is used for the exterior boundary Γq. Note
that the hydraulic coupling term in the above formula results from the interior
boundary conditions at the fracture surfaces, in virtue of the following equation:∫

Γ+
d

δp(v · nΓ+
d

)dΓ +

∫
Γ−

d

δp(v · nΓ−
d

)dΓ = −
∫
Γd

δp(v+ − v−) · nΓd
dΓ

= −
∫
Γd

δpqddΓ

(20)

The above equation states that the velocity of the fluid normal to the fracture is
discontinuous, which indicates, according to Darcy’s law, that the gradient of fluid
pressure along the normal to the fracture surface is discontinuous. At the same
time, the fluid pressure field as well as the virtual pressure should be continuous
across the fracture so that Darcy’s law can be applied. Thus, we use the same
virtual pressure δp as in equation 19 to multiply the governing equation of the
fluid flowing in the fracture (eq. 12), and we integrate it over the fracture domain
Γd to obtain the following weak form:∫

Γd

δp[[v]] · nΓd
dΓ =

∫
Γd

δpqddΓ

= −
∫
Γd

δp
∂w

∂t
dΓ −

∫
Γd

δp
w

Kf

∂p

∂t
dΓ

−
∫
Γd

∇mδp ·
[
w3

12µ
∇mp

]
dΓ + δpQin|s=0

(21)

where ∇m denotes the one dimensional gradient along the fracture tangent direc-
tion (mΓd

, as shown in Figure 2). The width of the fracture is computed through
the following relationship:

w = (u+ − u−) · nΓd
= [[u]] · nΓd

. (22)

The weak form of governing equation for the fluid flow inside the fracture can
be directly injected into the weak form of the governing equation for the fluid
flowing in the matrix (eq. 19), since the same virtual field δp is used.
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2.3 Nonlocal continuum damage model for transversely isotropic materials

As explained by Roth et al. [70], Wang & Waisman [85] and Leclerc et al.[52],
the mechanical failure of quasi-brittle materials occurs in two phases: the process
starts with diffused material degradation due to microscopic defects inception and
evolution, and continues with localized macroscopic fracture propagation. The first
phase can be modeled with continuum damage mechanics. Non-local enhancement
is needed to capture softening. The evolution of damage can then be used to predict
the initiation of a localized macroscopic fracture in the second phase.

In the following, we briefly introduce the nonlocal damage model for trans-
versely isotropic materials, proposed by the authors in [40,41] and used to govern
matrix behavior in this paper. Note that we focus on plane strain conditions with
tensile damage development. The model is built on the principle of strain equiva-
lence, which states that the deformation of the damaged material under the actual
stress σ is the same as that of the non-damaged material under the so-called ef-
fective stress, σ̂, defined as:

σ̂ = M : σ (23)

where M is a fourth-order damage operator (second-order with Voigt notation
M). Assuming that damage components in each direction evolve independently,
the damage operator M has a diagonal form, as follows:

Mii =
1

1− ωi
i = 1, 2, 3, 4 (24)

where ωi are the components of damage variable ω ( in eq. 1). Note that Voigt nota-
tions are adopted here, so that σ̂4 = τ̂12 = τ12

1−ω4
, in which ω4 = 1−(1−ω1)(1−ω2).

The diagonal form of M ensures that the damaged compliance matrix resulting
from equation 23 is symmetric. We consider transversely isotropic materials, in
which the local coordinate system is oriented so that direction 1, called the axial
direction, is perpendicular to the bedding plane. Directions 2 and 3, along the bed-
ding plane, are called transverse directions. Correspondingly, in equation 24, ω1 is
called axial damage and ω2 and ω3 are the transverse damage variables. Damage
components are directly related to equivalent strains, as explained below. We fo-
cus on plane strain conditions, in which the equivalent strain in the out-of-plane
direction is zero, which implies that the damage component ω3 is zero.

We focus on quasi-brittle materials, in which the non-linear stress/strain rela-
tion results from damage evolution only (micro-crack development), with negligible
inelastic deformation. Adopting the principle of strain equivalence, the constitutive
relation is expressed as

ε = S0 : M : σ. (25)

where S0 is the material elastic compliance matrix, which depends on 5 indepen-
dent parameters for transversely isotropic materials, and they are Young’s modulus
in axial and transverse direction (E1/E2), shear modulus G12, Poisson’s ratio in
the bedding plane ν23 and in the plane perpendicular to the bedding plane (ν12).
In plane strain conditions, the damaged stiffness tensor C(ω) = (S0 : M)−1 can
be explicitly expressed by using Voigt notation, as follows:

C =


C11 C12 C13 0
C21 C22 C23 0
C31 C32 C33 0
0 0 0 C44

 (26)
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Local-2

Local-1

Layer debonding and sliding Layer tensile breaking

Fig. 3 The two primary failure modes in transversely isotropic materials.

in which

C11 = E1(1− ω1)
(

(1− ω2)ν223 − 1
)
/D

C22 = E2(1− ω2)
(

(1− ω1)ν12ν21 − 1
)
/D

C33 = E2(1− ω1)(1− ω2)(ν21ν12 − 1)/D

C44 = G12(1− ω1)(1− ω2)

C12 = −E1ν21(1− ω1)(1− ω2)(1 + ν23)/D

C21 = −E2ν12(1− ω1)(1− ω2)(1 + ν23)/D

C13 = −E1ν21(1− ω1)
(

1 + (1− ω2)ν23
)
/D

C31 = −E2ν12(1− ω1)
(

1 + (1− ω2)ν23
)
/D

C32 = C23 = −E2(1− ω2)
(
ν23 + (1− ω1)ν12ν21

)
/D

(27)

where E2ν12 = E1ν21, and D = (1 − ω2)ν223 + 2(1 − ω1)(1 − ω2)ν12ν21ν23 + (1 −
ω1)(2− ω2)ν12ν21 − 1.

In order to distinguish damage development in axial and transverse directions,
two loading surfaces g1/g2 are defined as:

g1(ε, κ1) = εeq1 − κ1, g2(ε, κ2) = εeq2 − κ2 (28)

where the equivalent strains εeq1 /ε
eq
2 are scalar measures of strain defined in the

axial and transverse directions. κ1 and κ2 are the internal state variables that
control the evolution of damage: they represent the equivalent strain thresholds
before the initiation of damage in directions 1 and 2, respectively. After damage
initiation, κ1 and κ2 are the largest equivalent strains ever reached during the past
loading history of the material.

Field investigation and laboratory experiments [81,26] indicate that there are
two primary failure modes in transversely isotropic rock (Figure 3): the sliding
mode, in which failure is controlled by the tensile and shear strength of the bedding
planes, and the non-sliding mode, in which failure is controlled by the strength of
the matrix material. Correspondingly, the two equivalent strains in two loading
surfaces (eq. 28) for direction dependent transverse isotropic materials under plane
strain condition are defined as:

εeq1 =

√
(ε11)2 + (ε12)2

(
εt011
εs012

)2

, εeq2 =

√
(ε22)2 + (ε12)2

(
εt022
εs012

)2

(29)
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where εt011 (respectively εt022) is the initial tensile strain threshold for the sliding
mode (respectively for the non-sliding mode), and εs012 is the initial out-of-bedding-
plane shear strain threshold. They are all material properties, and are calibrated
from experimental data.

The loading surfaces in Eq. 28, together with the definition of equivalent strains
in Eq. 29, determine the current boundary of the elastic domain gi < 0. Damage
can only grow if the current strain state reaches the boundary gi = 0. Karush-
Kuhn-Tucker complementary conditions are used to account for loading-unloading
stress paths:

g1 ≤ 0, κ̇1 ≥ 0, κ̇1g1 = 0

g2 ≤ 0, κ̇2 ≥ 0, κ̇2g2 = 0
(30)

Now, we establish a relationship between the internal state variables κ1, κ2,
defined as the maximum equivalent strains ever encountered in the material, and
the damage variable components ωi, (i = 1, 2). Since both the internal variables
and the damage components grow monotonically, it is admissible to postulate the
evolution law of damage in the form ωi = f(κi), i = 1, 2. The exact form of
the function f should be identified from actual stress paths monitored in exper-
iments, such as uniaxial stress-strain curve in axial and transverse directions. In
the absence of such data, we assume that in tension, the axial damage component
follows an exponential law, which reflects rapid micro crack propagation in mixed
I-II mode:

ω1 =

{
0, if κ1 ≤ εt011
1− exp

(
−κ1−εt011

αt
11

)
, if κ1 > εt011

(31)

where αt11 is a material parameter that controls the damage growth rate. We use
a similar evolution law for tensile damage growth in the transverse directions:

ω2 =

{
0, if κ2 ≤ εt022
1− exp

(
−κ2−εt022

αt
22

)
, if κ2 > εt022

(32)

where αt22 controls the ductility of the response in the transverse directions.
The constitutive law in equation 25 leads to stress-strain softening behavior,

which results in the well known mesh dependence issue in finite element simula-
tions. Specifically, the size of the damage zone, which is linearly related to energy
release rate and should be a material constant, does not converge upon mesh refine-
ment [43]. Mathematically, the partial differential equations governing quasi-static
problems loose ellipticity, which makes the boundary problem ill-posed. To address
this issue, we adopt the integral-based nonlocal regularization technique, in which
the damage evolution at a material point not only depends on the stress state
at that point, but also on the stress of points located within a certain neighbor-
hood, the size of which is controlled by internal length parameters. Numerically,
we replace the local equivalent strains εeqi in the loading surfaces (eq. 28) by their
nonlocal counterparts εeqi , which are calculated as the weighted averages of the
local equivalent strains over an influence volume V :

εeqi (x) =

∫
V

α(x, ξ)εeqi (ξ)dV (ξ), (i = 1/2). (33)
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where x and ξ are the position vectors of the local point considered and of a point
located in the influence volume, respectively. α(x, ξ) is a weight function and is
normalized to preserve constant fields, as follows:

α(x, ξ) =
α0(‖x− ξ‖)∫

V
α0(‖x− ξ‖)dV (ξ)

. (34)

where the function α0(r) monotonically decreases with the increasing distance
r = ‖x−ξ‖. We choose α0(r) to be a bell-shaped function with a bounded nonlocal
influence zone lc as

α0(r) =

〈
1− r2

l2c

〉2

. (35)

in which lc provides an internal length parameter that serves as a localization
limiter to alleviate mesh sensitivity. In addition, the size of lc also determines the
size of the damage process zone.

2.4 Macro cohesive zone model: PPR

The nonlocal damage model performs well for modeling diffused damage develop-
ment during micro-crack propagation. However, it suffers spurious damage growth
during macro-fracture localization because the fixed interaction domain used in the
non-local formulation enables the transfer of energy from the damage process zone
to a neighbouring unloading elastic region [31,76]. In addition, macro-fracture
surfaces are not explicitly represented. Therefore, in this paper, we employ the
nonlocal damage model to simulate micro-crack propagation (i.e. the damage pro-
cess zone development) and we define a damage threshold ωcrit above which a
macroscopic fracture segment represented by a cohesive zone model is inserted
to simulate the macro-fracture localization. We adopt the potential based PPR
cohesive model [65]. The main traction-separation equations are explained in the
following.

σmax

Tn(Δn,0)

0 δnc δn Δn

φnφn

τmax

τmax

Tt(0, Δt)

δt

δt

δtc

δtc Δt

φt

Macro Fracture

Mathematical crack tip     Cohesive crack tip      Material  crack tip

Fracture wake

δnc/tc

δn/t

Fig. 4 PPR cohesive model of macro-fracture propagation. σmax (respectively, τmax) denotes
normal (respectively, shear) cohesive strength at normal separation δnc (respectively, at shear
separation δtc). δn (respectively, δt) is the normal (respectively, shear) separation at which
cohesive traction is zero. φn and φt are the mode I and mode II cohesive energy release rates,
respectively.

The PPR meets the following requirements: (i) Complete normal and shear
failure are reached when normal or tangential separation reaches a maximum value;
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(ii) The traction rate is equal to zero when the traction is equal to the cohesive
strength; (iii) The energy release rate is equal to the area enclosed by the traction-
separation curve. The expression of the potential is

Ψ(∆n,∆t) = min(φn, φt) +

[
Γn

(
1− ∆n

δn

)α(
m

α
+
∆n
δn

)m
+ 〈φn − φt〉

]
×
[
Γt

(
1− |∆t|

δt

)β(
n

β
+
|∆t|
δt

)n
+ 〈φt − φn〉

]
.

(36)

where ∆n and ∆t (respectively δn and δt) stand for the separations in the normal
and shear directions at the current time (respectively, at failure) as shown in Figure
4. φn (respectively φt) is the mode I (respectively, mode II) cohesive energy release
rate. α and β are the shape factors that control the concave or convex nature of the
softening curve. The mechanical response of brittle materials is best represented
by power law softening equations or bilinear softening laws [79]. Accordingly, we
use α = β = 4, which allows representing concave shaped softening curves with a
power law. Γn and Γt are energy constants, related to φn and φt as follows:

Γn = (−φn)〈φn−φt〉/(φn−φt)

(
α

m

)m
, Γt = (−φt)〈φt−φn〉/(φt−φn)

(
β

n

)n
. (37)

where m,n, called the non-dimensional exponents, are expressed in terms of the
shape factors α, β (α = β = 4 in this study) and of the initial slope indicator
(λn, λt), as follows:

m =
α(α− 1)λ2n
(1− αλ2n)

, n =
β(β − 1)λ2t
(1− βλ2t )

(38)

The initial slope indicators are defined as the ratios of critical crack opening
width to the final crack opening width (Figure 4), i.e. λn = δnc/δn, λt = δtc/δt.

According to thermodynamic principles, the traction vector in the local coor-
dinate system (Tn, Tt), noted td in the global coordinate system shown in Figure
2, is obtained directly from the derivative of the potential in equation 36:

Tn(∆n,∆t) =
Γn
δn

[
m

(
1− ∆n

δn

)α(
m

α
+
∆n
δn

)m−1

− α
(

1− ∆n
δn

)α−1(
m

α
+
∆n
δn

)m]
×
[
Γt

(
1− |∆t|

δt

)β(
n

β
+
|∆t|
δt

)n
+ 〈φt − φn〉

]
Tt(∆n,∆t) =

Γt
δt

[
n

(
1− |∆t|

δt

)β(
n

β
+
|∆t|
δt

)n−1

− β
(

1− |∆t|
δt

)β−1(
n

β
+
|∆t|
δt

)n]
×
[
Γn

(
1− ∆n

δn

)α(
m

α
+
∆n
δn

)m
+ 〈φn − φt〉

]
∆t
|∆t|

(39)

Usually, the extrinsic CZM, in which the elastic behavior (or initial ascending
slope) is excluded, is used to model fracture propagation when a cohesive segment
or a cohesive interface element is adaptively inserted. Only the softening branch is
used, because the elastic deformation of the material is already accounted for by
the continuum damage model. However, numerical simulations indicate that the
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absence of one-to-one relationship at the point ∆n = ∆t = 0 causes stability issues.
In the following, we use the intrinsic cohesive zone model with λn = λt = 0.01 to
improve the convergence rate, and to avoid unwanted elastic separation.

To close the formulation of the PPR cohesive model, relationships between
the cohesive strengths (σmax, τmax) and the final normal and shear crack opening
widths (δn, δt) are needed. The traction rate is equal to zero when traction is equal
to the cohesive strength, so we have:

δn =
φn
σmax

αλn

(
1− λn

)α−1

(
α

m
+ 1)

(
α

m
λn + 1

)m−1

δt =
φt
τmax

βλt

(
1− λt

)β−1

(
β

n
+ 1)

(
β

n
λt + 1

)n−1
(40)

As explained in [63], the tangent Jacobian matrix can be calculated analyti-
cally from the potential based cohesive segment model, which is critical to achieve
quadratic convergence in the Newton-Raphson iterative scheme. The reader is re-
ferred to [65,64] for the expression of the Jacobian matrix for loading, unloading
and reloading stress paths.

3 Discretization and Resolution Procedure

3.1 XFEM Spatial Discretization for Displacement and Pressure

To model fracture propagation without remeshing, we adopt the XFEM to dis-
cretize the primary variables. The Heaviside enrichment function is employed to
account for the displacement jump across the macro-fracture. Note that the bound-
ing medium is modeled by the proposed anisotropic damage model with softening,
so there is no singularity at the macro fracture tip. Thus, the classical branch-
ing functions are not necessary here. As a result, the approximate function of
displacement uh(x, t) is expressed in the following form:

uh(x, t) =
∑
i∈S

Nui(x)ui(t) +
∑
i∈SH

Nui(x)
1

2
[HΓd

(x)−HΓd
(xi)]ai(t)

= Nu(x)U(t) +Na(x)A(t)

(41)

where Nui(x) is the standard shape function associated with node i, S is the set
of all nodal points and SH is the set of enriched nodes, the supports of which are
bisected by the fracture. ui(t) and ai(t) denote the nodal value of the displacement
field associated with the standard and enriched degree of freedoms respectively.
The Heaviside jump function H(x) is defined as

HΓd
(x) =

{
+1, φ(x) > 0

−1, φ(x) < 0
(42)

where φ(x) is the level set function, which is defined as the closest distance from the
fracture surface, with positive or negative, depending on which side of the fracture
the point x is located – see Figure 2. It is worth noting that the shifted jump
function 1/2 [HΓd

(x)−HΓd
(xi)] is used to avoid the problem of post processing
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and blending elements [25]. The analytical form of the displacement jump across
the fracture Γd is:

[[u(x, t)]] =
∑
i∈SH

Nui(x)ai(t) = Na(x)A(t) (43)

Note that the displacement jump is directly used to calculate the fracture
aperture w in the fluid flow governing equation, as w = [[u(x, t)]] · nΓd

(eq. 22).
For the fluid pressure field, enrichment is done with the distance function. The
approximate pressure field is expressed as:

ph(x, t) =
∑
i∈S

Npi(x)pi(t) +
∑
i∈SH

Npi(x) [DΓd
(x)−DΓd

(xi)]R(x)bi(t)

= Np(x)P (t) +Nb(x)B(t)

(44)

where Npi(x) is the standard finite element shape function associated with node
i. Nodal sets S and SH are the same as for the displacement field. pi(t) and
bi(t) denote the nodal value of the fluid presure associated with the standard and
enriched degree of freedom, respectively. DΓd

(x) is the distance function, defined
as:

DΓd
(x) =

{
+φ(x), if φ(x) > 0

−φ(x), if φ(x) < 0
(45)

The gradient of the distance function along the direction normal to the fracture
is discontinuous, with: ∇DΓd

· nΓd
= HΓd

. As a result, enriching the FEM with
the distance function for the pressure field allows ensuring a continuous pressure
field and a discontinuous gradient of pressure across the fracture. Thus, the fluid
exchange between the fracture and the matrix can be accounted for. Similar to the
displacement approximation, the shifted enrichment function [DΓd

(x)−DΓd
(xi)]

is used and R(x) is a weight function, defined as R(x) =
∑
i∈SH

Npi(x) as pro-
posed by Mohammadnejad and Khoei [58]. It is worth noting that the pressure
field at the tip of the fracture does not need to be enriched to satisfy the “no
leakage flux” boundary condition.

From now on, we use the following (simplified) notations: Nu(x) and Np(x)
(respectively, Na(x) and Nb(x)) are the matrices of standard (respectively, en-
riched) shape functions for the displacement field u and for the pressure field p,
respectively. U(t) and P (t) (respectively, A(t) and B(t)) are the vectors of the
standard (respectively, enriched) displacement and pressure degrees of freedom,
respectively. By substituting the approximations (eqs 41, 44) into the governing
weak form equations (eqs 4, 8, and 12), we can obtain the discretized form of the
governing equations, as follows:

KuuU +KuaA−QupP −QubB − F ext
u = 0

KT
uaU +KaaA−QapP −QabB −QadPd + F int

a − F ext
a = 0

QTupU̇ +QTapȦ+MppṖ +MpbḂ +HppP +HpbB − F int
p − F ext

p = 0

QTubU̇ +QTabȦ+MT
pbṖ +MbbḂ +HT

pbP +HbbB − F int
b − F ext

b = 0

(46)

where the Ritz method is used, i.e. in which the virtual displacement δu and the
virtual pressure δp are used as weight functions. The matrices Kαβ(α, β = u, a)
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are the mechanical stiffness matrices, which can be expressed as:

Kαβ =

∫
Ω

BT
α CBβdΩ (47)

where B is the strain-displacement matrix (derivative of shape functions with
respect to the coordinates), and C is the Voigt matrix of damage stiffness tensor
C.

The matrices Qαβ(α, β = u, p) are hydro-mechanical coupling terms, which
can be expressed as:

Qup =

∫
Ω

BT
uαNpdΩ, Qub =

∫
Ω

BT
uαNbdΩ

Qap =

∫
Ω

BT
a αNpdΩ, Qab =

∫
Ω

BT
a αNbdΩ

(48)

in which N is the shape function vector.
The matrices Mαβ(α, β = p, b) represent the compressibility of the fluid and

of the solid skeleton and they are expressed as:

Mpp =

∫
Ω

NT
p

1

M
NpdΩ, Mpb =

∫
Ω

NT
p

1

M
NbdΩ,

Mbb =

∫
Ω

NT
b

1

M
NbdΩ

(49)

where M is the Biot modulus defined in equation 9. The matrices Hαβ(α, β = p, b)
represent the hydraulic conductivity and are expressed as

Hpp =

∫
Ω

∇NT
p
km
µ
∇NpdΩ, Hpb =

∫
Ω

∇NT
p
km
µ
∇NbdΩ,

Hbb =

∫
Ω

∇NT
b
km
µ
∇NbdΩ

(50)

It is worth noting that the mass balance equation for the fluid flow in the
fracture does not explicitly appear in the discrete form (equation 46). Instead,
we introduce the internal force (flux) vector (F int

p ,F int
b ) to account for the mass

exchange between the matrix and the fracture, as follows:

F int
p =

∫
Γq

NT
p qddΓ

= −
∫
Γd

NT
p
w

Kf
ṗdΓ −

∫
Γd

NT
p [[u̇]] · nΓd

dΓ

−
∫
Γd

∇NT
p ·mΓd

w3

12µ
∇p ·mΓd

dΓ +NpQin|s=0

F int
b =

∫
Γq

NT
b qddΓ

= −
∫
Γd

NT
b
w

Kf
ṗdΓ −

∫
Γd

NT
b [[u̇]] · nΓd

dΓ

−
∫
Γd

∇NT
b ·mΓd

w3

12µ
∇p ·mΓd

dΓ

(51)
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The mechanical coupling term between the fracture and the matrix constitutes
another internal force vector F int

a in the equilibrium equation, expressed as

F int
a =

∫
Γd

NT
a (td − pnΓd

)dΓ =

∫
Γd

NT
a tddΓ −

∫
Γd

NT
a nΓd

pdΓ. (52)

where the fluid pressure p and the cohesive traction td are both exerted on the
fracture surfaces. The remainder of the external force (flux) vectors in equation
46 are listed in the following:

F ext
u =

∫
Γt

NT
u t̄dΓ +

∫
Ω

ρNT
u gdΩ

F ext
a =

∫
Γt

NT
a t̄dΓ +

∫
Ω

ρNT
a gdΩ

F ext
p = −

∫
Γq

NT
p q̄dΓ +

∫
Ω

ρfkm
µ
∇NT

p · gdΩ

F ext
b = −

∫
Γq

NT
b q̄dΓ +

∫
Ω

ρfkm
µ
∇NT

b · gdΩ

(53)

3.2 Finite Difference Temporal Discretization and Resolution Procedure

In order to further simplify the notations in the following derivations for time
discretization, we condense the enriched and standard degree of freedoms for dis-
placement and pressure as U(U ,A) and P(P ,B). The weak form of the governing
equation discretized in space (eq. 46) can be rewritten as

KU−QP + F int
U (U̇, Ṗ)− F ext

U = 0

QT U̇ +M Ṗ +HP− F int
P (U̇, Ṗ)− F ext

P = 0
(54)

To solve the above equations, we use a linear discretization scheme in time:
first-order time derivatives Ẋ are expressed in terms of the difference between X
at time step n+ 1 and X at time step n:

Ẋn+θ ≈
Xn+1 −Xn

∆t
(55)

where ∆t is the time step. X at the current time is the weighted value between
time step n+ 1 and time step n:

Xn+θ = (1− θ)Xn + θXn+1 (56)

in which the weight θ can be any value between 0 and 1. If θ = 0, the time
discretization method is the explicit forward Euler scheme; if θ = 1, the time
discretization method is the implicit Euler scheme. We use θ = 2/3 to ensure
unconditional stability. After injecting the time discretization equations into the
spatially discretized governing equations (eq. 54), we obtain the residual at time
step n+ 1, as follows:

RU,n+1 = KUn+1 −QPn+1 + F int
Un+1

− F ext
Un+1

= 0

RP,n+1 = QTUn+1 + (M + θ∆tH)Pn+1 − F int
Pn+1

−GPn+1
= 0 (57)
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where GPn+1
is the vector of known values at time step n, expressed as:

GPn+1
=∆tF ext

Pn+1
+QTUn +

(
M −∆t(1− θ)H

)
Pn

+

∫
Γd

NT
P
w

Kf
pndΓ +

∫
Γd

NT
P [[u]]n · nΓd

dΓ

−∆t(1− θ)
∫
Γd

∇NT
P ·mΓd

w3

12µ
∇pn ·mΓd

dΓ

(58)

and F int
Pn+1

is the flux vector that accounts for the mass exchange between the
matrix and the fracture at time step n+ 1:

F int
Pn+1

=−
∫
Γd

NT
P
w

Kf
pn+1dΓ −

∫
Γd

NT
P [[u]]n+1 · nΓd

dΓ

−∆tθ
∫
Γd

∇NT
P ·mΓd

w3

12µ
∇pn+1 ·mΓd

dΓ +∆tNPQin|s=0

(59)

The nonlinear system (equation 57) is solved iteratively. We adopt the Newton-
Raphson method to linearize the system with respect to displacement and pressure
at the equilibrium iteration i within the time step n+ 1, as follows:

[
Ri+1

U,n+1

Ri+1
P,n+1

]
=

[
RiU,n+1

RiP,n+1

]
+

[
∂RU
∂U

∂RU
∂P

∂RP
∂U

∂RP
∂P

]i
n+1

[
dUin+1

dPin+1

]
= 0 (60)

The derivative of the residual with respect to the unknown degrees of freedom
is the Jacobian matrix J . Note that the mechanical stiffness K(ω) depends on
damage, and is therefore a function of the unknown displacement. The internal
forces and flux vectors (F int

U , F int
P ) are also functions of the unknowns at time step

n+ 1. As a result, the full consistent tangent matrix J is:

J =

[
∂RU
∂U

∂RU
∂P

∂RP
∂U

∂RP
∂P

]
=

[
K + ∂K

∂U U +
∂F int

U
∂U −Q+

∂F int
U
∂P

QT − ∂F int
P
∂U M + θ∆tH − ∂F int

P
∂P

]

=


K̃uu K̃ua −Qup −Qub
K̃T
ua K̃aa +

∂F int
a

∂a −Qap +
∂F int

a

∂p −Qab +
∂F int

a
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(61)

where K̃ = K+ ∂K
∂U U. The analytical expression for K̃ is complex due to the non-

local contribution, detailed in Section 3.3. The other terms in Eq. 61 are expressed
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as:

∂F int
U

∂U
=
∂F int

a

∂a
=

∫
Γd

NT
a Λ

TTcohΛNadΓ

∂F int
a

∂p
=

(
∂F int

p

∂a

)T
= −

∫
Γd

NT
a nΓd

NpdΓ

∂F int
a

∂b
=

(
∂F int

b

∂a

)T
= −

∫
Γd

NT
a nΓd

NbdΓ

∂F int
p

∂p
= −

∫
Γd

NT
p
w

Kf
NpdΓ − θ∆t

∫
Γd

∇NT
p ·mΓd

w3

12µ
∇Np ·mΓd

dΓ

∂F int
p

∂b
=

(
∂F int

b

∂p

)T
= −

∫
Γd

NT
p
w

Kf
NbdΓ − θ∆t

∫
Γd

∇NT
p ·mΓd

w3

12µ
∇Nb ·mΓd

dΓ

∂F int
b

∂b
= −

∫
Γd

NT
b
w

Kf
NbdΓ − θ∆t

∫
Γd

∇NT
b ·mΓd

w3

12µ
∇Nb ·mΓd

dΓ

(62)

in which Λ is the rotation matrix used to transform the expression of the displace-
ment jumps from the local coordinate system (∆n,∆t) to the global coordinate
system [[u]]. It is defined as

Λ =

[
cosθ sinθ

−sinθ cosθ

]
(63)

where θ is the angle between the fracture path and the horizontal axis.
Tcoh in equation 62 is the derivative of the cohesive traction force td(Tn, Tt)

with respect to the local displacement jump (∆n,∆t). Since we adopt the PPR co-
hesive model, Tcoh can be explicitly calculated from the expression of ∂(Tn, Tt)/∂(∆n,∆t),
as shown by Park and Paulino [64]. Note that the above formulation does not ac-
count for fluid flow within the fracture explicitly. Instead, for those elements with
enriched degrees of freedom, the XFEM is used to account for the influence of
the fracture on the permeability matrix H, on the coupling term Q and on the
compressibility term M , through the terms (∂F int

U /∂U, ∂F int
P /∂P). This approach

integrates fluid flow in both the fracture and the matrix, and requires few degrees
of freedom, which makes the implementation of the model easier and allows achiev-

ing faster convergence rates. It is also important to note that the extra terms ∂F int

∂P
are added to the coupling and permeability matrixes, which allows using the same
linear interpolation function without concerning stability issue.

3.3 Analytical expression of the mechanical tangent stiffness matrix

Due to the adopted nonlocal formulation, the calculation of internal variables at a
point requires calculating the average of the values taken by those variables at the
Gauss points located in the influence zone. Consequently, additional terms need
to be added to the consistent stiffness matrix K̃αβ(α, β = u, a) due to nonlocal
enhancement. Following the procedure of Jirásek and Patzák [44], we have

K̃αβ = Kαβ +
∂Kαβ

∂u
u =

∫
Ω

(
BT
α CBβ +BT

α
∂C
∂u
Bβu

)
dΩ. (64)
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where the first term on the right hand side is the local Gauss point contribution,
which can be numerically expressed as∫

Ω

BT
α CBβdΩ =

NI∑
I=1

wI(B
I
α)T CBI

β , (65)

where NI is the total number of Gauss points, and wI are the corresponding inte-
gration weights. The second term on the right hand side of equation 64 constitutes
the nonlocal Gauss points contribution. According to the chain rule, the derivative
of the stiffness tensor with respect to the displacement reads:

∂C(ωi)
∂u

=
∂C
∂ωi

∂ωi
∂κi

∂κi
∂ε̄eqi

dε̄eqi
du

(66)

For the plane strain case studied in this paper, it is possible to obtain the
explicit expression of each of the partial derivatives involved in the above equation.
In particular, the derivative of stiffness with respect to damage is:

∂C
∂ωi

=
1

D2

∂ωiC11D − ∂ωiDC11 ∂ωiC12D − ∂ωiDC12 0
∂ωiC12D − ∂ωiDC12 ∂ωiC22D − ∂ωiDC22 0

0 0 ∂ωiC33D2

 (67)

in which

∂ω1D = −2(1− ω2)ν12ν21ν23 − (2− ω2)ν12ν21

∂ω2D = −ν223 − 2(1− ω1)ν12ν21ν23 − (1− ω1)ν12ν21

∂ω1C11 = −E1

(
(1− ω2)ν223 − 1

)
∂ω2C11 = −E1ν

2
23(1− ω1)

∂ω1C22 = −E2ν12ν21(1− ω2)

∂ω2C22 = −E2

(
(1− ω1)ν12ν21 − 1

)
∂ω1C33 = −G12(1− ω2)

∂ω2C33 = −G12(1− ω1)

∂ω1C12 = E1ν21(1− ω2)(1 + ν23)

∂ω2C12 = E1ν21(1− ω1)(1 + ν23)

(68)

According to equations 31 and 32, the partial derivatives of the damage com-
ponents with respect to κi can be calculated as

∂ω1

∂κ1
=

1

αt11
exp

(
−κ1 − ε

t0
11

αt11

)
,

∂ω2

∂κ2
=
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αt22
exp

(
−κ2 − ε

t0
22

αt22

)
. (69)

Note that the partial derivative terms

∂κ1
∂ε̄eq1

=

{
0, if ε̄eq1 < κ1

1, if ε̄eq1 = κ1
,

∂κ2
∂ε̄eq2

=

{
0, if ε̄eq2 < κ2

1, if ε̄eq2 = κ2
(70)

are actually the loading-unloading indicators.
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Differentiating the nonlocal strains defined in equation 33 with respect to dis-
placement, we obtain

∂ε̄eqi (xI)

∂u
=

NJ∑
J=1

wJαIJ

(
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)
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wJαIJ

(
dεeqi
dε

)
J

BJ

(71)

in which:

αIJ =
α0(‖x− ξ‖)∑NJ

J=1 α0(‖x− ξ‖T )wJ
(72)

and in which the notation of wJ in equations 71 and 72 is the volume ∆V oassoci-
ated to Gauss point J . NJ is the total number of Gauss points within the nonlocal
influence zone for Gauss point I. dεeqi and dε are vectors, which can be calculated
from the definition of the equivalent strains as

dεeq1
dε

=
1

εeq1

[
ε11 0 ε12

(
εt011
εs12

)2 ]
,

dεeq2
dε

=
1
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[
0 ε22 ε12

(
εt022
εs012

)2 ]
(73)

Combining all the above expressions, we can obtain the analytical expression
of the consistent tangent stiffness (K̃αβ , α, β = u, a) as:

K̃αβ =

NI∑
I=1

wI(B
I
α)T CBI

β

+

NI∑
I=1

NJ∑
J=1

2∑
i=1

wIwJαIJ(BI
α)T

(
∂C
∂ωi

∂ωi
∂κi

∂κi
∂εeqi

)
I

(
dεeqi
dε

)
J

BJ
βB

I
βuI

(74)

3.4 Damage Driven Cohesive Fracture Propagation

The transition from continuum damage to macro-fracture is modeled by insert-
ing cohesive segments to regular finite elements when damage reaches a critical
threshold. Because the damage model employed in this paper is phenomenological,
the transition can be triggered at any level of damage. We set ωcrit = 0.1 for all
simulation cases presented in this paper. To compute the damage value at the
crack tip, we adopt the method proposed by Wang and Waisman [85] and Wells
et al. [86]. As shown in Figure 5, we assume that the fracture propagates when
the maximum component of the weighted damage vector (ωi, i = 1, 2 for 2D) over
the half circle patch (shaded in blue) exceeds the threshold ωcrit = 0.1. Mathe-
matically, we first obtain ω̄i by using the bell-shaped weight function α0(‖x−ξ‖),
through

ω̄i(xtip) =

∫
ΩT

α(xtip, ξ)ωi(ξ)dΩT (ξ) =

∑NGP

j=1 α0(‖xtip − ξj‖)ωi(ξj)∆Vj∑NGP

j=1 α0(‖xtip − ξj‖)∆Vj
, (i = 1, 2)

(75)

where xtip and ξ are the global coordinates of fracture tip and the Gauss points
in ΩT , respectively. NGP is the total number of Gauss points in ΩT , and ∆VJ is
the geometrical volume associated with Gauss point j. Note that the size of ΩT is
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lc

Tip detection region

Fig. 5 Principle of the transition between continuum damage and discrete fracture in the
hydraulic fracturing problem.

controlled by the internal length lc because the weight function used for non-local
enhancement is the bell-shaped function (eq. 35).

The macro fracture propagates in the direction d̄i, calculated as the weighted
average of the damage directions in the half-circle patch, as follows:

d̄i(xtip) =

∫
ΩT

α(xtip, ξ)ωi(ξ)
d

‖d‖dΩT (ξ), (i = 1, 2) (76)

where d = ξ − xtip, as shown in Figure 5. To summarize, we first compare
max(ω̄i), i = 1, 2 with ωcrit. If max(ω̄i) ≥ ωcrit, we propagate the fracture in
the direction of d̄i with a user-defined growth length ∆a. For all the simulations
presented in this chapter, we choose ∆a = lc. Since only the Heaviside function
is used for XFEM discretization, no cohesive segment is inserted into the tip ele-
ment if the fracture tip is located inside an element. It is worth noting that for a
given time increment, the size of the zone in which damage satisfies the transition
criterion may exceed the growth length ∆a. Thus, we repeat the above calcu-
lation until max(ω̄i) < ωcrit. Within a single time increment, the length of the
propagated fracture equals several times ∆a. Every time the fractures grows by
a length ∆a, we add extra degrees of freedom at the enriched nodes and we add
enriched shaped functions for the elements that contain newly enriched nodes. In
addition, to ensure consistent displacement jumps across the fracture, we adopt
the classical sub-region quadrature technique to divide a quadrilateral element
into multiple triangles, as illustrated in Fig. 5. We use three Gauss points within
each triangle to calculate the Jacobian matrix and the residual. To transform the
internal and state variables from the initial to the new set of Gauss points, we
adopt the super-convergent patch recovery method proposed by Zienkiewicz and
Zhu [87]. After remapping, we recheck the propagation criterion and repeat all
the follow-up steps. Once the propagation criterion is not satisfied, we march to
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the next increment and construct the global matrix equations, and the problem is
iteratively solved. When convergence is reached and the results are post-processed,
the fracture propagation procedure is repeated. For clarification, the overall com-
putational steps of the proposed numerical tool is presented in Algorithm 1.
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Algorithm 1: Computational procedures of the proposed multiscale hy-
draulic fracturing

Read input of node, element, fracture, and boundary conditions;
Initialize level set function φ(x);
Initialize interface gauss points for current cohesive segments, volumetric
gauss points for current enriched and unenriched elements;
for all volumetric gauss points in the elements do

Add neighboring gauss points ξ to the nonlocal table of the current
gauss point x if r = ‖x− ξ‖ < lc;
Compute the nonlocal weight according to eqs. 34 and 35;

end
while t < assigned simulation time do

Set residual = 1, t = t+∆t;
while residual > tolerance do

for all volumetric gauss points do
Compute and store equivalent strain according to eq. 29;

end
for all volumetric and cohesive gauss points do

Assemble the Jacobian matrix J according to eq. 61;
Update the residual according to eq. 57;

end
if residual (eq. 57) < tolerance then

Break;
end
Solve the linear equation and update the iterative u and p;

end
Update internal variables from converged u and p at this increment;
Output and post-process the converged results;
Set propagation = true;
while propagation == true do

Determine the tip detection region ΩT ;
Compute ω̄i(xtip) and d̄i(xtip) according to eqs. 75 and 76;
if max(ω̄i) > ωcrit then

Propagate the fracture in the weighted direction with length
∆a = lc;

else
propagation = false;

end
if propagation == true then

Update the level set function φ(x);
Update the volumetric and cohesive gauss points;
Remap variables from the old to the new set of gauss points;
Update and remap the primary variable vectors;

end

end

end
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Fig. 6 The Geometry, boundary conditions and finite element mesh of the KGD problem.

4 Engineering Applications

We implemented the proposed numerical framework in MATLAB for modeling
fluid driven multiscale fracture propagation in transversely isotropic porous me-
dia. In the following, we validate the formulation and implementation of the
multi-scale hydraulic fracturing model by comparing simulation results to analyti-
cal solutions for the classical Khristianovic-Geertsma-de Klerk (KGD) problem of
hydraulic fracturing. Then, we investigate the relative influence of material and
stress anisotropy on the fracture path during hydraulic fracturing. Note that linear
quadrilateral plane strain elements are used to discretize the domain in all cases.

4.1 Model verification: KGD Injection Problem

The KGD problem is that of fracture propagation due to the injection of a viscous
fluid in a borehole embedded in an infinite isotropic porous medium. Figure 6
presents the geometry, dimensions, boundary conditions and mesh used for the
simulations. Only a half of the plane strain domain is modeled due to symmetry,
and the size of the domain is chosen to avoid boundary effects. The internal length
lc is set to 0.05m. We refine the mesh along the expected fracture propagation path
with an element size 0.015m. Note this element size satisfies the requirement of
nonlocal regularization as it is less than 1/3 of the internal length lc = 0.05 m. In
addition, the proposed cohesive element size is 10 times smaller than the cohesive
process zone, which can be estimated as lp = 0.1EG/σ2

max according to Turon
et al.[82]. An initial fracture with length 0.1m is placed at the borehole, and a
constant injection rate of Q = 0.0002m2/s is applied at the fracture mouth. For
all the simulation cases in this section, we set the initial effective stress and fluid
pressure to zero, and we employ a constant time increment ∆t = 0.01s for a total
simulation time of 10 s. The remainder of the material parameters for the porous
medium is given in Table 1.
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Table 1 Material parameters for the KGD problem: hydraulic fracturing in an infinite
isotropic porous medium.

Young’s modulus E = 15.96 GPa
Poisson’s ratio ν = 0.2
Initial tensile strain threshold εt011 = 3.5× 10−5

Initial shear strain threshold εt012 = 1.5× 10−4

Damage evolution parameter αt11 = 1.5× 10−4

Internal length lc = 0.05 m
Cohesive energy release rate G = 90 N/m
Cohesive traction strength σmax = 1 MPa
Intrinsic permeability κii(i = 1, 2, 3) = 2× 10−14 m2

Dynamic viscosity of water µ = 1× 10−3 Pa·s
Bulk modulus of solid phase Ks = 36 GPa
Bulk modulus of water Kw = 3 GPa
Biot’s constant αii(i = 1, 2, 3) = 0.79
Initial porosity φ0 = 0.19
Critical Damage ωcrit = 0.1
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Fig. 7 Trial and error calibration process for the multi-scale model of hydraulic fracturing:
(1) Simulation of a splitting test with pre-inserted cohesive segments without damage evo-
lution inside the matrix to obtain the global force-displacement curve; (2) Simulation of the
same splitting test with the proposed multi-scale framework, in which cohesive segments are
dynamically inserted, to obtain the F − u curve; (3) Adjustment of the material parameters
used in simulation (2) until the two F − u curves match.

Given that the considered domain is isotropic, the elastic constants as well as
the damage evolution parameters are not direction dependent (Table 1). In addi-
tion, we assume that the cohesive strength and the cohesive energy release rate
have the same value for mode I and mode II fracture propagation (φn = φt =
G, σmax = τmax) in all simulation cases. It is also worth noting that the damage
initiation and evolution parameters (εt011, ε

t0
12, α

t
11) as well as the cohesive fracture

parameters (G, σmax) are calibrated to ensure a consistent transition from dam-
age to fracture. In this work, a constant cohesive strength and a constant energy
release rate are assigned to each new cohesive segment inserted during fracture
propagation. Note that it is possible to track the amount of energy dissipated by
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damage and to dynamically calculate the cohesive energy release rate as the differ-
ence between the total energy release rate and the damage energy release rate (see
[39,42]). The calibration of the multi-scale fracture propagation model is explained
in Figure 7. We first simulate a mode I splitting test using cohesive segments with-
out damage development within the matrix. All the cohesive segments are inserted
along the predefined fracture path (assumed to be known a priori in this particular
case) and we use G = 100N/m, σmax = 1MPa. We choose the rest of the param-
eters of the PPR cohesive model (m = n = 4, λn = λt = 0.01) so as to represent
brittle fracture propagation and to ensure fast convergence. We track the global
response of the opening displacement (u) and the reaction force (F ) at the point
where the displacement boundary is applied and we obtain the displacement-force
curve marked with red circles in Figure 7. We carry out another simulation with
the same boundary conditions, with the proposed multi-scale fracturing model
this time, in which nonlocal damage is modeled in the matrix at the first place,
and cohesive segments are dynamically inserted once the maximum weighted dam-
age component exceeds the threshold (ωcrit). We adjust the damage initiation and
evolution parameters (εt011, ε

t0
12, α

t
11) and the cohesive fracture parameters (G, σmax)

by trial and error, until the global response (u − F curve marked with blue plus
signs in Figure 7) matches the response obtained when only cohesive segments
are considered. For both simulation cases, the same Young’s modulus and Poisson
ratio are used (Table 1), and the nonlocal internal length is lc = 0.05m. After cal-
ibration, we obtain the same cohesive strength σmax = 1MPa for the multi-scale
framework as for the cohesive segment model, but a lower cohesive energy release
rate GI = 90N/m. In summary, simulating multi-scale fracture propagation with
the calibrated parameters represents fracture propagation in a porous material
that has a 1 MPa strength and a total 100 N/m energy release rate according to
laboratory measurements.

Figure 8 shows the distribution of damage, nonlocal equivalent strain, pore
pressure and stress on the deformed mesh (displacements multiplied by 1,000) at
t = 10 s. As expected, diffused damage ω2 (horizontal micro-cracks) is obtained
within the process zone surrounding the macro fracture. Note that damaged el-
ements are replaced by cohesive segments when the weighted damage exceeds
the threshold ωcrit = 0.1, and not when a particular component of damage ex-
ceeds that threshold. That explains why the fracture tip does not advance when
max(ω̄i) < ωcrit, even when the value of damage components at a few Gauss points
within the tip detection region ΩT exceed the threshold, max(ωi) ≥ ωcrit (Figure
5). The distribution of the nonlocal equivalent strain ε̄eq shown in Figure 8 indi-
cates that tensile strains only exist in the area near the fracture tip. The fracture
surface behind the tip is under compressive strain even when the pore pressure
in this area is positive. Note that we assume that the entire simulation domain
including the macro fracture is saturated, i.e. the fluid lag is not considered. How-
ever, a suction zone with negative pore pressure is obtained at the fracture tip,
which indicates that a mathematical fluid lag exists. We will consider multi-phase
flow with explicit consideration of fluid lag in future studies. The distribution of σ2
further confirms that only a limited zone close to the fracture tip is under tension
during hydraulic fracturing; the rest of the domain is under compression.

An analytical solution to the KGD problem was obtained for an elastic and
impermeable medium in which a fracture propagates due to the injection of an
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Fig. 8 Distribution of damage component ω2, nonlocal equivalent strain ε̄eq , pore pressure,
and stress component σ2 on the deformed mesh (displacements multipled 103 times) at the
end of the simulation (t = 10 s). Note that the fracture propagates in direction 1 (x-axis).

incompressible fluid [32], as follows:

CMOD = 1.87

(
µ(1− ν)Q3

Gs

)1/6

t1/3

L = 0.68

(
GsQ

3

µ(1− ν)

)1/6

t2/3

CMP = 1.135

(
G3
sQµ

(1− ν)3L2

)1/4

(77)
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(b) Evolution of fracture mouth opening displace-
ment against injection time
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(c) Evolution of fracture length over time

Fig. 9 Comparison of injection simulation results for various bounding medium permeabilities
against the KGD analytical solution, in which the medium is assumed to be impermeable.

where Gs is the shear modulus, L is the fracture length at time t, CMOD stands
for crack mouth opening displacement, and CMP stands for crack mouth pressure.
The other notations are the same as in Table 1.

Figure 9 shows our simulation results of CMP, CMOD and L, plotted against
injection time. We also simulated the KGD test with different permeabilities
(κ = 2 × 10−13m2, and κ = 2 × 10−15m2), keeping the rest of the parameters
the same (Table 1). Results are compared to the analytical KGD solution [32]. As
expected, results highlight the significant influence of the intrinsic permeability on
the evolution of the fracture geometry (κ = 2 × 10−13m2 vs κ = 2 × 10−14m2).
The CMP builds up and lasts longer for porous media with high permeability
(Figure 9(a)). Because the fluid leak off decreases the fluid pressure in the facture,
the final fracture length is smaller in porous media with higher permeability. On
the contrary, the CMP quickly decreases for porous media with low permeability,
because the macro fracture propagates quickly, thus creating space for the fluid
to flow into. This phenomenon does not hold for all permeabilities. Below a cer-
tain permeability value, the CMP does not change any longer (κ = 2 × 10−14m2
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vs κ = 2 × 10−15m2). For t ≤ 1s, with a very low intrinsic permeability, the
evolutions of L and of the CMOD found numerically match the analytical solu-
tion, in which the bounding medium is assumed to be impermeable. After 1s, the
analytical solution overestimates the fracture length L and underestimates the
CMOD. This discrepancy is because: (1) even for media with very low permeabil-
ity, the assumption of impermeability does not hold because the fluid flow into
the matrix decreases the effective stress that applies to the fracture faces; (2) the
proposed multi-scale hydraulic fracture propagation model depends on the mate-
rial’s strength and energy release rate, while the analytical solution is for a purely
brittle fracture propagation problem, independent of strength or energy release
rate.

We further investigate the influence of the fluid injection rate on hydraulic frac-
turing for the KGD problem. All the material parameters are kept the same as in
Table 1, and we vary the injection rate from Q = 0.0002m2/s to Q = 0.0005m2/s.
Figure 10 shows the calculated CMOD and fracture length evolution against the
injection time, and the fracture opening displacement profile, the hydraulic water
pressure profile as well as the effective cohesive attraction profile along the prop-
agated fracture surface at the end of the simulation (at t = 10 s). The evolution
of the CMOD and of the fracture length show that a higher injection rate results
in faster fracture propagation and a wider fracture mouth opening. The profile of
fracture opening at the end of the simulation further confirms that both the length
and the width of the fracture increase with the injection rate. However, the increase
rate is not linear, since the difference of CMOD and fracture length for the same
injection rate interval dQ = 0.0001m2/s at the same time is not the same. Due
to the assumption of saturation, water pressure profile shown in Fig. 10(d) show
negative value near the fracture tip area, and the magnitude of which increases
with increasing injection rate. Figure 10(e) plot the effective cohesive attraction
along the propagated fracture surface at time of t = 10s. For all of the injection
rates, the cohesive attraction starts at the fracture tip and increases to cohesive
strength σmax = 1MPa, and then gradually decreases to zero as the displacement
jump increases. It is worth noting that the starting cohesive attraction for COD
= 0mm varies with the injection rate, because that the transition from continuum
damage to discrete fracture is triggered from weighted damage, not from stress.

4.2 Influence of Material and Stress Anisotropy on Hydraulic Fracturing

The following engineering problem illustrates the performance of the proposed
computational framework in modeling the hydro-mechanical behavior of saturated
media subjected to both material and stress anisotropy. A square domain 500
mm by 500 mm is considered. The solid skeleton is transversely isotropic with
horizontal layers. We carry out three series of simulations (Figure 11). In test 1,
all normal displacements at the boundary are fixed. An initial fracture, 40 mm
in length, oriented at an angle θ with respect to the horizontal axis, is placed
at the center of the domain (Figure 11(a)). We investigate the effect of material
anisotropy on hydraulic fracturing by varying the angle θ under a constant fluid
injection rate Q = 10mm2/s. About 6,500 linear plane strain elements were used
to discretize the domain. We set the initial pore pressure to zero, and we run the
simulation in 0.2 s with the time increment ∆t = 0.005 s. In test 2, we use the
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(b) Evolution of fracture length over time
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(c) Fracture opening profile at t=10 s
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(d) Fracture water pressure profile at t=10 s
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(e) Fracture cohesive attraction profile at t=10 s

Fig. 10 Simulation results for a fluid driven fracture in a porous medium with different
injection rates.

same initial and boundary conditions, but we change the fluid injection rate from
Q = 10mm2/s to Q = 20mm2/s. Comparing the results of tests 1 and 2 informs
on the influence of injection rate on hydraulic fracturing in an anisotropic material.
In test 3, anisotropic in situ stress is applied at the boundary and the injection
angle θ is non-zero, as shown in Figure 11(b). The other initial and boundary
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Fig. 11 Geometry and boundary conditions used to investigate the influence of material and
stress anisotropy on hydraulic fracturing in transversely isotropic materials.

conditions are the same as in the previous two cases. The parameters used for the
three simulations are listed in Table 2.

Table 2 Material parameters used in the simulations that investigate the influence material
and stress anisotropy on hydraulic fracturing.

Parameters Perpendicular to the layer Paralllel to the layer

Young’s modulus E11 = 10 GPa E22 = 20 GPa
Poisson’s ratio ν12 = 0.2 ν23 = 0.2
In plane shear modulus G12 = 6.25 GPa
Initial tensile strain threshold εt011 = 8× 10−5 εt022 = 9× 10−5

Initial shear strain threshold εt012 = 6.8× 10−4

Damage evolution parameter αt11 = 3.5× 10−4 αt22 = 4× 10−4

Internal length lc =10 mm
Cohesive energy release rate G,1 = 0.095 N/mm G,2 = 0.19 N/mm
Cohesive traction strength σmax,1 =1 MPa σmax,2 =2 MPa
Intrinsic permeability κ11 = 2× 10−14 m2 κ22 = 4× 10−14 m2

Dynamic viscosity of water µ = 1× 10−3 Pa·s
Bulk modulus of solid phase Ks = 36 GPa
Bulk modulus of water Kw = 3 GPa
Biot’s constant α11 = 0.75 α22 = 0.65
Initial porosity φ0 = 0.19
Critical Damage Ωcr = 0.1

Like in the KGD case, we calibrate by trial and error the material parameters
that control damage evolution (εt011, ε

t0
22, ε

t0
12, α

t
11, α

t
22) and those that govern the

cohesive fracture behavior (G,1, G,2, σmax,1, σmax,2) in the directions perpendicu-
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Fig. 12 Trial and error calibration process for coupling nonlocal damage with cohesive fracture
for transversely isotropic materials: (1) Simulation of two splitting tests with pre-inserted
cohesive segments parallel (respectively perpendicular) to the layer to obtain the global force-
displacement curve in the case of horizontal (respectively vertical) bedding; (2) Simulation of
the same splitting tests with the multi-scale hydraulic fracturing model, in which the cohesive
segments are dynamically inserted, to obtain the F − u curves; (3) Adjustment of the multi-
scale hydraulic fracturing model parametrs until the F − u curves match for both fracture
propagation directions.

lar and parallel to the layer. We use the local coordinate system in which axis-1
is perpendicular to the layer, and axis-2 is parallel to the layer. Note that in the
following simulations, we fix the local coordinate system in such a way that axis-1
is always vertical. As explained in Figure 12, we first simulate two splitting tests
with pre-inserted cohesive segments parallel and perpendicular the layer, for which
the cohesive energy values are G,1 = 0.1N/mm,G,2 = 0.2N/mm and the cohesive
strengths are σmax,1 = 1 MPa, σmax,2 = 2 MPa. Let us recall that in the PPR co-
hesive model, we employ φn = φt = G, σmax = τmax,m = n = 4, λn = λt = 0.01 to
account for mixed mode fracture propagation and brittle fracture propagation [65,
64,62]. We extract the global force-displacement curves (red circles for fractures
parallel to the layer and green squares for fractures perpendicular to the layer).
Then we run the same two simulations using the multi-scale hydraulic fracturing
model, in which cohesive segments are dynamically inserted when the weighted
damage at the fracture tip exceeds the critical value ωcrit = 0.1. After a number
of simulations with different input parameters, which control meso-scale damage
evolution and macro-scale cohesive fracture propagation, we find the best match
for the F − u curve, as shown in Figure 12. The calibrated parameters are listed
in Table 2. In summary, the calibrated multi-scale fracture propagation model is
globally equivalent to a model of fracture propagation in a transversely isotropic
material with G,1 = 0.1N/mm,σmax,1 = 1 MPa in direction parallel to the layer,
and G,2 = 0.2N/mm,σmax,2 = 2 MPa in direction perpendicular to the layer.

The calibration process only provides the cohesive parameters when the frac-
ture propagates in the direction parallel or perpendicular to the bedding. To deter-
mine the cohesive parameters when the fracture propagation direction is neither
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Fig. 13 Elliptical failure curve used to determine cohesive parameters when the fracture
propagates at an angle θ relative to the layer.

parallel or perpendicular to the bedding, a whole series of laboratory experiments
would need to be carried out. In this paper, we propose to obtain the cohesive
parameters by projection on an elliptical failure curve, as shown in Figure 13. The
cohesive strength and the energy release rate of a fracture that propagate at an
angle θ to the layer are expressed as:

σmax,θ =
√

(cosθ · σmax,1)2 + (sinθ · σmax,2)2

G,θ =
√

(cosθ ·G,1)2 + (sinθ ·G,2)2
, (78)

Fundamentally, we assume that the strength and the energy release rate at
different propagation angles form an ellipse in plane strain condition.

Figure 14 shows the pore pressure p, the effective stress component σx and
the fracture paths at the end of the simulation (at t = 0.02 s) for test 3 with the
boundary conditions σv = 4 MPa, σh = 2 MPa, and Q = 20 mm2/s. The increased
pore pressure near the fracture in Figures 14(a) and 14(b) demonstrates that the
proposed numerical tool can predict the fluid leak off from the macro fracture to the
porous matrix. Compared to the case θ = 90◦, the higher pore pressure observed
for θ = 0◦ is due to the lower permeability in the direction perpendicular to the
layer (Table 2): more fluid pressure builds up and less fracture space is created
(less fracture length and less width). In agreement with physical expectations,
for θ = 30◦, 60◦, compressive effective stress is observed in the area behind the
fracture tip, and tensile effective stress only concentrates in the areas ahead of
fracture tip. For θ = 30◦, 60◦, 90◦, the fracture propagates in the direction of
maximum compressive in situ stress, which is exactly what is reported in literature.
For θ = 0◦, we expect to see two branches emerging from the tips of the initial
horizontal fracture, that finally form vertical fractures. Instead, we obtain the
horizontal fracture shown in Figure 14(a), because of the continuum damage to
fracture transition criterion, based on a weighted damage threshold (Section 3.4).
Even if the continuum damage model predicts damage development in the two
vertical branch directions, the weighted damage direction is horizontal.
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Fig. 14 Pore pressure and effective stress distributions shown on the deformed mesh (fracture
opening magnified 50 times) at the end of the test 3 with σv = 4 MPa, σh = 2 MPa, and
Q = 20 mm2/s.

Figure 15 shows the pore pressure distribution and the fracture paths at the
end of the simulations (at t = 0.02s) for the three tests, when θ = 30◦ and when
θ = 60◦. In test 1 (no in situ stress, Q = 10 mm2/s), the fracture propagates
in the horizontal direction parallel to the layer, for both θ = 30◦ (Figure 15(a))
and θ = 60◦ (Figure 15(b)). However, when the injection rate increases to Q = 20
mm2/s (tests 2 and 3), the fracture path is horizontal only for θ = 30◦ under
zero in situ stress (Figure 15(c)), while a vertical fracture path is predicted for
θ = 60◦ under the same boundary conditions (Figure 15(d)). This questionable
result can be attributed to: (1) The weighted damage driven fracture propagation
criterion, which, similar to all other continuum theory based propagation criteria,
is not capable of predicting fracture branching; (2) The rapid injection of the
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fluid, which can change the fracture propagation direction if it does not align with
the weak layer. Further laboratory experiments are needed to understand which
of these two phenomena is the primary cause of the discrepancy. In tests 3, the
fracture path is parallel to maximum compressive stress, irrespective of the initial
fracture direction (the figure shows the case of σv = 4MPa, σh = 2MPa).

We further extracted the propagated fracture paths for all the tests simulated,
as illustrated in Figure 16. When only material anisotropy is considered, results
show that a horizontal fracture path parallel to the layer forms (Figure 16(a)).
Typically, the fracture length and width increase with the injection rate. Ques-
tionable results are obtained in some of the cases with θ ≥ 60◦, due to the weighted
damage driven fracture propation criterion. Figure 16(b) presents a comparison
between the cases with material anisotropy only (tests 1 and 2) and the cases with
both maerial and stress anisotropy (test 3). For all orientations θ considered, the
predicted fracture length is shorter when in situ stress is applied. This is because
a part of the energy is dissipated to overcome the compressive in situ stress. Some
cases need further experimental assessment and more advanced fracture propaga-
tion criteria, especially when a horizontal fracture path is predicted under non-zero
in situ stress, or when a vertical fracture is predicted under zero in situ stress.

5 Conclusions

In this paper, we formulated and implemented a numerical tool to model multi-
scale mixed mode fluid driven fracture propagation in transversely isotropic porous
media. We first presented the strong and weak forms of the governing equations
for the hydraulic fracturing problem, including the equilibrium of forces for the
mixture, the balance of fluid mass within the matrix, and the balance of fluid
mass along the fracture. A nonlocal anisotropic damage model was coupled to
the PPR cohesive macro-fracture model to simulate the transition between mi-
croscopic crack propagation and macroscopic fracture localization. The transition
from continuum damage to cohesive fracture is done by dynamically inserting co-
hesive segments once the weighted damage exceeds a certain threshold. Diffusion
equations are used to model fluid flow inside the porous matrix and within the
macro fracture, in which conductivity is obtained by Darcy’s law and the cubic
law, respectively. The XFEM is employed to approximate the solution for the fully
coupled u−p formulation: the macro-fracture is modeled with Heaviside jump func-
tions for the displacement field and with modified distance functions for the fluid
pressure. After discretizing the system of equations in time, the entire nonlinear
system is linearized and solved by using a Newton-Raphson iteration scheme, in
which the consistent tangent stiffness is derived analytically, accounting for the
the non-local terms, in the plane strain case.

We validate the formulation and implementation by simulating the KGD mode
I fracture propagation problem in an infinite porous medium. We check that for
low volumes of fluid injected in a porous medium of low permeability, the model
provides predictions that are in agreement with the analytical solution proposed for
impermeable media. We then examine the effect of material and stress anisotropy
on hydraulic fracturing by simulating a series of injection tests in an inclined
fracture embedded in a transversely anisotropic porous medium. As expected, the
fracture propagates along the bedding direction in the absence of in situ stress
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and along the direction of maximum compressive stress when anisotropic stress
boundary conditions are applied. The length and width of the fracture increase
with the injection rate.

The validation against the KGD analytical solution shows that the widely used
LEFM model might over-predict the propagation length. The proposed computa-
tional framework, the first of its kind, allows simulating multiscale hydraulic frac-
turing. Improvements are still needed. For example, some discrepancies are noted,
especially when both material and stress anisotropy are accounted for, because of
the choice of the damage-to-fracture transition criterion, which cannot account
for fracture branching (but works perfectly well for unidirectional fractures). On
the one hand, a more detailed algorithm is needed to process the evolution of
damage at the tip and predict branching paths; On the other hand, the level set
method used to identify fracture paths in the XFEM has inherent limitations to
account for multiple fracture branches and intersections, especially in 3D. To over-
come these limitations, other numerical methods will be explored in future work,
such as techniques based on the dynamic insertion of cohesive interface elements,
peridynamics and the phase field method.
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Fig. 15 Pore pressure distribution shown on the deformed mesh (crack opening magnified 50
times) at the end of the tests simulated.
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Fig. 16 Simulated fracture paths.
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