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Abstract
The discrete damage model presented in this paper accounts for 42 non-interacting
crack microplanes directions. At the scale of the Representative Volume Element
(RVE), the free enthalpy is the sum of the elastic energy stored in the non-damaged
bulk material and in the displacement jumps at crack faces. Closed cracks propagate
in pure mode II, whereas open cracks propagate in mixed mode (I/II). The elastic
domain is at the intersection of the yield surfaces of the activated crack families, and
thus describes a non-smooth surface. In order to solve for the 42 crack densities,
a Closest Point Projection algorithm is adopted locally. The RVE inelastic strain
is calculated iteratively, by using Newton-Raphson method. The proposed damage
model was rigorously calibrated for both compressive and tensile stress paths.
FEM simulations of triaxial compression tests showed that the transition between
brittle and ductile behavior at increasing confining pressure can be captured. The
cracks’ density, orientation and location predicted in the simulations are in agreement
with experimental observations made during compression and tension tests, and
accurately show the difference between tensile and compressive strength. Plane
stress tension tests simulated for a fiber-reinforced brittle material also demonstrated
that the model can be used to interpret crack patterns, design composite structures
and recommend reparation techniques for structural elements subjected to multiple
damage mechanisms.
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Introduction
Brittle materials such as concrete, rock, and ceramic composites, exhibit a complex
mechanical behavior at the macro-scale, including stress-induced damage and stiffness
anisotropy, non-linear stress/strain relationships and volumetric dilation, unilateral
effects due to crack closure, and a transition from brittle to ductile behavior at increasing
confining stress (Krajcinovic et al. 1991; Chiarelli et al. 2003). All of these effects
can be explained by the nucleation and propagation of micro-cracks at the grain
boundaries and/or from pore spaces. Three approaches were adopted so far to model
these microstructural effects on the behavior of the Representative Volume Element
(RVE) (Yuan and Harrison 2006): Continuum Damage Mechanics (CDM), statistical
formulations and micromechanics.

CDM is based on the thermodynamics of irreversible processes (Chaboche 1981; Simo
and Ju 1987; Chaboche 1988; Krajcinovic 1989; Collins and Houlsby 1997). Damage
tensors are used as internal state variables and incorporated into the expression of the
RVE free energy in order to account for stress-induced anisotropy. Damage tensors
are similar to crack density tensors in micromechanics or fabric tensors in structural
geology, and are usually of order two (Murakami 1988; Mazars and Pijaudier-Cabot
1989; Halm and Dragon 1996) or of order four (Simo and Ju 1987; Ju 1989). CDM
models are phenomenological in nature, which implies that damage tensors essentially
measure the damaged mechanical effects rather than the microstructure evolution itself
(Swoboda and Yang 1999a). As a result, damage evolution laws are arbitrarily crafted to
match a macroscopic behavior (usually represented by stress/strain curves), and do not
represent any clear physical mechanism. The behavior of brittle geomaterials depends
on the sign of the applied stress/strain. Therefore, the damage driving force (i.e. the
energy release rate that is work-conjugate to damage) has to be split into positive and
negative components, which are introduced in two different damage criteria (one for
tension, one for compression) (Lubarda et al. 1994; Frémond and Nedjar 1996; Comi
and Perego 2001). The singularities of the damage surfaces raise convergence issues in
Finite Element Methods (FEM). Unilateral effects, induced by crack closure with partial
recovery of compression strength, require additional material parameters and adds even
more complexity to the FEM implementation of CDM models Chaboche (1992, 1993);
Halm and Dragon (1996).
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Statistical formulations are based on microstructure descriptors, such as grain/pore
size/orientation/shape. The RVE is seen as a statistical distribution of solids
endowed with different local stiffness and strength parameters (Weibull 1951). Stress
concentrations are calculated around heterogenities, local failure criteria are checked, and
local field variables are updated. The RVE response is modeled by statistical averaging
methods. In continuum mechanics approaches such as FEMs, local mechanical properties
are assigned to Finite Elements that are distributed in space according to microstructure
statistical descriptors (Amitrano et al. 1999; Tang et al. 2000; Fang and Harrison 2002).
In discrete approaches, the RVE is represented by rigid or elastic spheres or irregularly
shaped elements, which interact according to constitutive laws that depend on the
statistical properties (Blair and Cook 1998; Amitrano et al. 1999; Jing 2003; Potyondy
and Cundall 2004). Statistical approaches allow simulating micro crack initiation, growth
and coalescence into macro fractures. However, statistical micro crack properties have to
be determined by trial and error to fit the macro material behavior, which is somewhat
random and time-consuming.

In micromechanical models, the RVE behavior is obtained by homogenization, after
calculating local stresses and displacements at crack faces. In the dilute homogenization
scheme such as Taylor’s model (e.g. Krajcinovic and Fanella (1986); Gambarotta and
Lagomarsino (1993); Pensée et al. (2002); Pensee and Kondo (2003); Swoboda and
Yang (1999a); Espinosa (1995); Feng and Yu (2010)), cracks are assumed to evolve
independently from each other, and the RVE behavior is obtained by superposition. By
contrast, crack interaction is accounted for in the self-consistent method (e.g., (Budiansky
and O’connell 1976; Lee and Ju 1991; Ju and Lee 1991)) and the Mori-Tanaka scheme
(e.g., Mori and Tanaka (1973); Zhu et al. (2008, 2009)). Microscopic interactions
were also accounted for by multiplying deformation gradients induced by various sets
of defects (e.g., (Clayton 2010)). Homogenization schemes were compared in several
studies, including Krajcinovic and Sumarac (1989); Ju (1991). Simulation results indicate
that the dilute scheme is accurate prior to the peak strength. Micro-crack evolution laws
are either derived from fracture mechanics (e.g., Kachanov (1982a); Krajcinovic and
Fanella (1986); Ju and Lee (1991); Yu and Feng (1995)) or damage growth criteria
(e.g., (Swoboda and Yang 1999b,a; Pensée et al. 2002; Pensee and Kondo 2003)). In
the former case, stress intensity factors accounting or not for crack interactions are
computed for Mode I splitting, Mode II frictional sliding or mixed Mode propagation.
In order to predict crack kinking (i.e., wing crack formation), it is often assumed that
a secondary crack aligned with the maximum compressive stress initiates and grows
due to stress- or displacement- driven energy release rates (e.g. Kachanov (1982b);
Horii and Nemat-Nasser (1986); Lee and Ju (1991); Lehner and Kachanov (1996)). The
advantage of fracture mechanics is that a direct link is established between micro-crack
propagation and macroscopic mechanical behavior, and the material parameters involved
all have a clear physical meaning. However, the assumptions required to describe the
crack arrangement and to predict the kinking direction limit fracture mechanics - based
approaches to a few loading paths only. In the latter case, self-similar propagation
laws are formulated in terms of force that is work-conjugated to damage (or crack
density). One of the major challenges raised by damage growth criteria is numerical
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implementation into FEM codes, which requires sophisticated algorithms and important
computational resources.

The main objective of the present paper is to formulate a damage model based on
a discrete description of damage microplanes, and to implement it in a FEM code in
order to capture inelastic deformation, unilateral effects and distinct strength and stiffness
properties in tension and compression, for complex stress paths involving the propagation
of both open and closed cracks in mode I, mode II, and mixed mode. First, the theoretical
formulation of the discrete damage model, based on Bazant’s 2× 21 integration method
and the dilute homogenization scheme, is presented. Different yield criteria are employed
for open and closed cracks for each microplane orientation considered in the integration
scheme. The elastic domain of the RVE is defined by the intersection of activated
damage surfaces, and the RVE inelastic strain tensor is obtained by superposing the
irreversible strains induced by all the activated crack openning displacements. Damage
yield surfaces are not smooth, which requires a special treatment to allow numerical
implementation. Then, we present a local Closest Point Projection algorithm, which we
use to determine the set of activated cracks and the corresponding increments of crack
density. We explain the detailed calculations required to calculate the Jacobian matrix
at the material point, which is needed in the Newton-Raphson method used to solve
the non linear FEM equations. We also validate the implementation of the resolution
algorithm by comparing material-point simulation results to those obtained with a one-
element FEM model. In the final section of the paper, we calibrate the proposed discrete
damage model against experimental results of triaxial compression and uniaxial tension
tests reported in the literature. We simulate triaxial compression tests and Hassanzadeh’s
direct tension test with the calibrated model parameters obtained for concrete. We also
model a composite made of a brittle matrix reinforced by stiff elastic fibers to study the
influence of reinforcement orientations on the formation of crack patterns.

Theoretical formulation of the discrete damage model

Micromechanics-based free enthalpy
We formulate a new damage model in which the expression of the free enthalpy is
obtained from micromechanics principles. In the following, we consider a RVE of
volume Ωr and external boundary ∂Ωr, in which a large number of penny shaped
microscopic cracks of various orientations are embedded in an isotropic linear elastic
matrix of compliance tensor Sm. Each microscopic crack is characterized by its normal
direction −→n and its radius a, which is at least 100 times smaller than the RVE
size. Opposite crack faces are noted ω+ and ω−, with normal vectors −→n + and −→n −

respectively. The displacement jump is noted:

[−→u ] = −→u + −−→u − (1)

Where −→u + (respectively −→u −) denotes the displacement vector at face ω+ (respectively
ω−). We consider a uniform stress fieldσ applied at the boundary ∂Ωr. The displacement
field at the RVE scale is calculated by superposition, by adding up the displacement field

Prepared using sagej.cls



Jin and Arson 5

in the elastic matrix in the absence of cracks and the displacement field induced by the
opening and sliding of micro-crack faces (Fig.1).

σ σm

σd

Figure 1. Homogenization based on the principle of superposition

We consider that the mechanical interaction between cracks is negligible and we use
a dilute homogenization scheme to calculate the crack displacement jumps. As a result,
the average micro stress is equal to the stress applied to the RVE, and we have:

σ =
1

Ωr

∫
Ωr

[σm(x) + σd(x)]dx (2)

In which σd is the stress field that is applied at micro-crack faces and σm is the
stress field in the linear elastic matrix. Moreover, the static constraint imposed by the
dilute homogenization scheme is applied to the elastic cracked RVE when crack do not
propagate, which implies that the local stress σd is the direct projection of the macro
stress σ on crack faces. Consequently, for each crack, the local stress that applies at the
crack faces is self-equilibrating and the matrix stress is equal to the macro stress:

0 =

∫
ω

σd(x)dx, σ = σm (3)

The elastic strain tensor of the matrix εe depends on the undamaged compliance tensor
Sm, as follows:

εe = Sm : σm = Sm : σ. (4)

In the dilute homogenization scheme adopted here, we treat each micro-crack as
a single crack embedded in an infinite elastic homogeneous matrix, which allows
calculating the displacement jumps from fracture mechanics principles (Horii and
Nemat-Nasser 1983; Kachanov et al. 2013). Considering a penny shaped crack of radius
a subjected to a uniformly distributed normal stress p (respectively shear stress −→τ ) at
its faces and embedded in an infinite elastic medium with Young’s modulus E0 and
Poisson’s ratio ν0, the average normal (respectively shear) displacement jump, also
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known as Crack Opening Displacement (COD), is expressed as:

〈[un]〉 =
16

3

1− ν2
0

πE0
pa

〈[−→ut ]〉 =
32

3

1− ν2
0

(2− ν0)πE0

−→τ a
(5)

We consider that the RVE contains families of penny shaped cracks that have same
orientation −→ni and same radius ai. Such a family of micro-cracks is shown in Fig.2(a). If
the family contains N cracks, the volume fraction of the normal and shear displacement
jumps can be calculated as follows:

βi =
N

Ωr
〈[un]〉πa2

i = ρic0σ
d : (−→ni ⊗−→ni) = ρic0σ : (−→ni ⊗−→ni)

−→γi =
N

Ωr
〈[−→ut ]〉πa2

i = ρic1[σd · −→ni − (−→ni · σd · −→ni)−→ni ] = ρic1[σ · −→ni − (−→ni · σ · −→ni)−→ni ]

(6)

Where −→τ = σ · −→ni − (−→ni · σ · −→ni)−→ni . Note that according to the dilute scheme
assumption, the direct projection of the macro stress σ on crack faces is equal to the
direct projection of the local stress σd on crack faces. ρi = Na3

i /Ωr is the crack density
parameter along the direction −→ni introduced in (Budiansky and O’connell 1976) . Note
that the value of ρi can exceed one. The coefficient c0 (respectively c1) is defined as the
normal (respectively shear) elastic compliance of the crack (Budiansky and O’connell
1976; Kachanov 1992):

c0 =
16

3

1− ν2
0

E0
, c1 =

32

3

1− ν2
0

(2− ν0)E0
(7)

A normal displacement jump can only be induced by a tensile force, i.e. for −→ni ·
σ · −→ni ≤ 0 (in which compression is counted positive, according to the soil mechanics
convention). The unilateral contact condition at crack faces can be expressed as

[un] ≥ 0, σnn = −→n · σ · −→n ≤ 0, [un]σnn = 0 (8)

The average strain due to the displacement jumps of the all the micro-cracks of the
family with normal −→ni is calculated as:

εd =
N

Ωr

∫
∂ω+

[un](−→ni ⊗−→ni)dS +
N

2Ωr

∫
∂ω+

([−→ut ]⊗−→ni +−→ni ⊗ [−→ut ])dS

= βi
−→ni ⊗−→ni +

1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )

(9)

According to the principle of superposition, the Helmholtz free energyW ∗ of the RVE
containing the N cracks of orientation −→ni is the sum of the elastic deformation energy of
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Figure 2. (a)Sketch of a RVE with one family of parallel equally sized penny shaped
micro-cracks; (b) Repartition of the integration points on the unit sphere, following the
microplane approach based on 2× 21 points presented in (Bažant and Oh 1986)

the matrix and the energy stored in the micro cracks displacement jumps, as follows:

W ∗ =
1

2
εe : Cm : εe +

1

2
σ : [βi

−→ni ⊗−→ni +
1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )] (10)

In which it is recalled that σ : −→ni ⊗−→ni = σd : −→ni ⊗−→ni , σ : −→ni ⊗−→γi = σd : −→ni ⊗−→γi .
The Gibbs energy (free enthalpy) is obtained by Legendre transformation, as follows:

G∗ = σ : εE −W ∗ (11)

In which εE = εe + εd is the RVE elastic strain. As a result, G∗ is expressed as:

G∗ =
1

2
σ : Sm : σ +

1

2
σ : εd

=
1

2
σ : Sm : σ +

1

2
σ : [βi

−→ni ⊗−→ni +
1

2
(−→γi ⊗−→ni +−→ni ⊗−→γi )]

(12)

By substituting Eq.6 into the expression of the free enthalpy above, and introducing the
unilateral contact condition in Eq.8, we get:

G∗ =
1

2
σ : Sm : σ +

1

2
c0ρiH(−→ni · σ · −→ni)σ : Ni : σ +

1

2
c1ρiσ : Ti : σ (13)

Where H(·) is the Heaviside jump function and −→ni · σ · −→ni = σinn is the normal stress at
the crack face. The fourth order normal (respectively, tangent) operator Nα (respectively,
Tα) is defined by:

Nα = Nα
ijkl = nαi n

α
j n

α
kn

α
l

Tα = Tαijkl =
1

4
(nαi n

α
k δjl + nαi n

α
l δjk + δikn

α
j n

α
l + δiln

α
j n

α
k )− nαi nαj nαknαl

(14)
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In which nαj is the unit normal vector of each direction α. We can calculate the total
Gibbs energy of the RVE by integrating G∗ for a distribution of crack orientations ρ(n),
over the unit sphere S2 = {−→n , |−→n |= 1}, as follows:

G =
1

2
σ : Sm : σ +

1

8π

∫
S2

ρ(−→n ){c0H(σinn)σ : Ni : σ + c1 σ : Ti : σ}dS (15)

Since the calculation of the integral above is impractical for a continuous distribution
ρ(−→n ), we use a numerical integration scheme, with M integration points:

G =
1

2
σ : Sm : σ +

1

2

M∑
i=1

wiρi

[
σ : (c0H(σinn)Ni + c1 Ti) : σ

]
(16)

Where wi is the weight in direction ni. We adopt Bazant’s discrete scheme with 2× 21
microplanes (Bažant and Oh 1986) as shown in Fig.2(b). Note that the calculation of
G requires M calculations at each time step. Increasing M can increase exponentially
the computational cost of the numerical integration. Bazant’s 2× 21 scheme provides
satisfactory accuracy at reasonable computation cost. For a detailed discussion about the
performance of the numerical integration scheme, the reader is referred to (Ehret et al.
2010; Levasseur et al. 2013).

Thermodynamically consistent yield function and evolution law
The derived Gibbs energy in Eq.16 only accounts for the elastic crack displacement
jump, without considering crack growth. Moreover, triaxial compression tests on
brittle materials, such as rock and concrete, show that irreversible deformation exists
after unloading, which indicates that inelastic deformation is an additional dissipation
mechanism that is coupled to micro-crack propagation. In order to account for
irreversible crack debonding (i.e. crack radius growth) accompanied by inelastic
deformation, we introduce the inelastic strain εin in the formulation. A hyper-elastic
framework (Collins and Houlsby 1997), in which the RVE strain tensor ε is split
into a pure elastic part εe which corresponds to the deformation of elastic matrix, an
additional elastic part εd which represents the micro-crack elastic strain, and the inelastic
deformation εin, is adopted as follows:

ε = εe + εd + εin = εE + εin (17)

In which:

εE = εe + εd =
∂G

∂σ

εe =
1 + ν0

E0
σ − ν0

E0
Tr(σ)δ

εd =

M∑
i=1

ρiwi(c0NiH(σinn) + c1Ti) : σ

(18)
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For each micro-plane orientation i, conjugation relationships are established to calculate
the damage driving force Yi:

Yi =
∂G

∂ρi
=

1

2
wiσ : (c0NiH(σinn) + c1Ti) : σ (19)

In the framework of thermodynamics, the damage driving force in direction i is
defined as the energy release rate necessary to propagate a unit crack density in that
direction. Additionally, in fracture mechanics, the energy release rate must exceed the
crack resistance R(ρi) to allow the crack boundary to grow. Thus, the most general
expression for the yield surface is:

fi(ρi, Yi) = Yi −R(ρi) (20)

Where R(ρi) is the equation of the crack resistance curve, which accounts for the
heterogeneities inside the material matrix and depends on the crack radius (crack
density). According to Eq.19, the expression of the energy release rate is quadratic in
deviatoric stress when the unilateral contact condition is not satisfied. However, rock
samples subjected to compression tests exhibit a brittle behavior at low confining pressure
and a ductile behavior at higher confining pressure. In order to capture this brittle-ductile
transition, a term depending on the mean stress is added to Eq.20. The yield criterion
adopted in the proposed model is inspired from Drucker-Prager model, and is expressed
as follows:

fi(ρi, Yi) = Yi − αTrσ −R(ρi) (21)

From a mechanical point of view, the expression of the resistance curveR(ρi) controls
the hardening or softening behavior after the initial yield surface is reached. In this study,
we consider that R(ρi) is a linear function of the crack density ρi (Pensee and Kondo
2003) and we emphasize that our model is only applicable for dilute distributions of
micro-cracks, i.e. before crack coalescence and before the peak of strength. In addition,
we distinguish the increase of open crack density in Modes I & II (when the unilateral
condition is satisfied for the ith microplane direction) and the increase of closed crack
density in Mode II (when the unilateral condition is not satisfied for the ith microplane
direction), as follows:

fi(ρi, Yi) = Yi − αTrσ − k(1 + ηρi) (22)

Where k = kc, η = ηc if cracks of the ith family are closed , and k = ko, η = ηo if
cracks of the ith family are open. Each crack yield criterion fi is associated with one
particular crack family. The macroscopic yield surface is the boundary of the elastic
domain intersected by all the activated crack yield surfaces, as shown in Fig.3. For each
active microplane direction, the closed crack criterion is activated if the macroscopic
stress projected on the crack plane is a compression, and the open crack criterion is
activated if the macroscopic stress projected on the crack plane is a tension. Note that in
Eq. 22, the crack yield criterion fi can be rewritten in the form of a function of stress and
crack density only, because the energy release rate is a function of stress. As a result, the
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(a) Color code used for microplane orientations

(b) Yield surfaces in stress space for closed cracks (c) Yield surfaces in compressive stress space for
closed cracks

(d) Yield surfaces in stress space for open cracks (e) Yield surfaces in tensile stress space for open
cracks

Figure 3. Representation of crack yield surfaces in the 3D stress space, for a uniformly
distributed damage density ρi = 0.001 in all microplane directions. Material parameters are
kc = 278.9, ηc = 116.6, α = 10−5 for closed crack families and
ko = 35.9, ηo = 20.6, α = 10−5 for open crack families. For a given state of stress, the elastic
domain is the space at the intersection of all the non-smooth activated crack yield surfaces.
Note the shape difference between the open crack yield surfaces and the closed crack yield
surfaces, due to the expression of energy release rate Yi.Prepared using sagej.cls
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increment of crack density of an activated crack family (fi > 0) can be readily calculated
by means of the consistency condition under controlled stress conditions:

ḟi(ρi, Yi) =
∂fi
∂σ

: σ̇ +
∂fi
∂ρi

ρ̇i = 0 (23)

The present discrete damage model requires solving all the equations that express
consistency conditions for all activated crack families simultaneously. By contrast, only
one consistency condition is used in Continuum Damage Mechanics models, which
limits the number of crack propagation modes considered. Fig.4 shows the evolution
of activated crack yield surfaces during an oedometric test (with no lateral expansion).
Crack yield surfaces expand independently from each other because of the crack non
interaction assumption.

Inelastic strains observed after unloading are due to residual geometric incompat-
ibilities at the crack faces, which purely depend on the damage-driving forces Yi.
Microscopic crack yield criteria are expressed in terms of the mean stress and not only
on the damage driving forces, which makes it challenging to represent the residual
geometric incompatibilities that arise at crack faces after unloading. In order to overcome
this limitation, we predict the evolution of inelastic strains due to these geometric
incompatibilities by resorting to non-associate flow rules. We introduce discrete damage
potentials, expressed as homogeneous functions of degree one in Yi, as follows:

gi(Yi) = Yi − C0 (24)

Following a non-associate flow rule, the macroscopic inelastic strain increment can be
computed from the damage potential, as follows:

ε̇in =

M∑
i=1

λ̇i
∂gi(Yi)

∂σ
=

M∑
i=1

wiλ̇i(c0NiH(σinn) + c1Ti) : σ (25)

Where λi is Lagrange multiplier for the ith crack family of normal −→ni . Note that the non
associate flow rule for the crack density is expressed as:

ρ̇i = λ̇i
∂gi
∂Yi

= λ̇i. (26)

Therefore, the Lagrange multiplier is equal to the increment of crack density, because
plastic deformation is coupled to damage evolution.

Numerical implementation of the multi-yield surface model

Local return mapping algorithm - closest point projection
As shown in Fig.3, the elastic domain in the proposed discrete damage model is
defined by the intersection of multiple non-smooth yield surfaces. At singular points,
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(a) Color code used for activated crack directions

(b) Initial crack yield surfaces (c) Crack yield surfaces after the test

Figure 4. Evolution of activated yield surfaces (i = 4− 7, 18− 20) during an oedometer test
(no lateral expansion). (b) Initial yield surfaces with a uniformly distributed crack density
ρi = 0.012. (c) Activated yield surfaces at the end of the test: ρ4−7 = 0.253, ρ18−21 = 0.300.
Note that some yield surfaces are superimposed due to symmetries.

the normal to this macroscopic yield surface is not unique. In order to achieve the
numerical implementation of the model into a UMAT subroutine in Abaqus Finite
Element program, we adopt the closest point projection algorithm presented in Simo
and Hughes (1998). In the following, we note ∆ a variation within a load increment and
δ a variation within an iteration performed during a load increment. We use the subscript
n to refer to load increment n, and the superscript (k) to refer to the iteration number.
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From the constitutive relations stated in Eq. 4 and 18, we have:

εE =
[
Sm +

M∑
α=1

ραwα(c0N+
α + c1Tα)

]
: σ

ε̇in =

M∑
α=1

λ̇α∂σgα(σ) =

M∑
α=1

ρ̇αwα(c0N+
α + c1Tα) : σ

(27)

Where N+
α = NαH(σαnn). In the following, we note Pα = wα(c0N+

α + c1Tα) for
simplicity. From the discrete Kuhn Tucker conditions, we have:

if f trialβ,n+1 > 0, for some α ∈ (1, 2, ...,M), (28)

then, it is an inelastic loading step. We define the inelasitc strain residual Rn+1 as
follows:

−Rn+1 = −∆εinn+1 +
∑

α∈Jact

∆ραn+1∂σgα,n+1 (29)

Where Jact is the set of crack families that are activated. From Eq.29 the iterative
correction is obtained as follows:

δε
in(k)
n+1 = R

(k)
n+1 +

∑
α∈Jact

∆ρ
α(k)
n+1∂σσgα,n+1δσ

(k)
n+1 +

∑
α∈Jact

δρ
α(k)
n+1∂σgα,n+1 (30)

The first trial stress is given as:

σtrialn+1 = (Sm)−1 :
[
εn + ∆εn+1 − εdn − εinn

]
(31)

Thereafter, iterations are performed to satisfy the yield criteria, flow rules and stress-
strain relationships. Throughout the iteration process, the given total strain increment
∆εn+1 is fixed. Correspondingly, the iterative change in stress is obtained as:

δσ
(k)
n+1 = −(Sm)−1 :

[
δε
d,(k)
n+1 + δε

in,(k)
n+1

]
(32)

Where the iterative change of damage-induced elastic strain is given by

δε
d(k)
n+1 =

M∑
α=1

ρ
α(0)
n+1Pα : δσ

(k)
n+1 + σ

(k)
n+1 :

∑
α∈Jact

Pαδρα(k)
n+1 (33)

Making use of Eq.30 and Eq.33, Eq. 32 is rearranged as

δσ
(k)
n+1 = −Cc :

[
R

(k)
n+1 + σ

(k)
n+1 :

∑
α∈Jact

2Pαδρα(k)
n+1

]
(34)

In which the consistent stiffness matrix is defined as follows:

Cc =
[
Sm +

M∑
α=1

ρ
α(0)
n+1Pα +

∑
α∈Jact

∆ρ
α(k)
n+1Pα

]−1

∂σgα,n+1 = Pα : σ
(k)
n+1

(35)
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By using a first order Taylor expansion to linearize the yield criteria that apply for the
sets of activated crack families, we get:

f
(k)
α,n+1 + ∂σfα : δσ

(k)
n+1 + ∂ραfα · δρα(k)

n+1 , α ∈ Jact (36)

After substituting Eq.34 into the above formulae, we obtain a system of coupled
equations in which the δραn+1 are the unknowns (in blue in the following equation):

f
(k)
α,n+1 − ∂σfα : Cc : R

(k)
n+1

= ∂σfα : Cc :
∑

β∈Jact

2∂σgβ,n+1δρ
β(k)
n+1 − ∂ραfα · δρ

α(k)
n+1 = 0, α ∈ Jact

(37)

For the given trial stressσtrialn+1 , we obtain the crack density at the current increment and at
the current iteration δρα(k)

n+1 by solving the coupled equations for all activated orientations
α ∈ Jact. Then it is possible to update the correction of stress and the inelastic strain
using Eqs. 34 and 30. The updated stress is then used to check the yield criteria as well
as the inelastic strain residual. If f (k+1)

α,n+1 or R(k+1)
n+1 exceeds the tolerance, the iterative

process is continued until both the yield criteria and the residual fall below some given
tolerances:

f
(k+1)
α,n+1 < TOL1, α ∈ Jact
||R(k+1)

n+1 ||< TOL2

(38)

As shown in Fig.5, the set of activated crack families estimated from the trial stress may
contain crack families that are actually non active. For a given increment of total strain,
the true stress state must be at the intersection of the active yield surfaces only. In order to
ensure the convergence from the trial stress to the true stress, the non-active crack families
need to be eliminated from the set Jact. To do so, the sign of the iterative increment of
crack density is checked after each iteration (in addition to checking the yield criteria):
if the value of the crack density increment is negative, the corresponding crack family is
removed from the activated crack set and the iteration is restarted by using the trial stress.

Algorithmic tangent moduli
We use the direct solver of Abaqus UMAT, in which the iterative resolution algorithm is
based on Newton-Raphson method. Consequently, we need not only to update the stress
and the state internal variables, but also to calculate the Jacobian matrix at the integration
point level. In this section, we derive the explicit expression of the Jacobian matrix. The
differentiation operator is noted as d. Note that differentiations are done at the end of
iterations for each loading increment, as explained in Table 1. First, we differentiate the
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σn
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σn+1,1

σn+1 σn+1,k

Figure 5. Geometrical representation of the return mapping algorithm used in this study: the
Closest Point Projection Method is applied for multiple non-smooth yield surfaces.

stress strain relationship and the discrete flow rules, as follows:

dεEn+1 =
[
Smn+1 +

M∑
α=1

ραn+1Pα
]

: dσn+1 + σn+1 :
∑

α∈Jact

Pαdραn+1

dεinn+1 =
∑

α∈Jact

∆ραn+1∂
2
σσgα(σn+1) : dσn+1 +

∑
α∈Jact

dραn+1∂σgα(σn+1)

=
∑

α∈Jact

∆ραn+1Pα : dσn+1 +
∑

α∈Jact

dραn+1Pα : σn+1

(39)

By substituting the above two equations into dεn+1 = dεEn+1 + dεinn+1, we obtain the
following relationship:

dεn+1 −
∑

α∈Jact

∆ραn+1Pα : dσn+1 −
∑

α∈Jact

dραn+1Pα : σn+1

=
[
Smn+1 +

M∑
α=1

ραn+1Pα
]

: dσn+1 + σn+1 :
∑

α∈Jact

Pαdραn+1

(40)

Equivalently,

dσn+1 =Chom :
[
dεn+1 − 2

∑
α∈Jact

dραn+1Pα : σn+1

]
(41)

Where Chom is the consistent modulus, expressed as

Chom =
[
Smn+1 +

M∑
α=1

ραn+1Pα +
∑

α∈Jact

∆ραn+1Pα
]−1

(42)
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The crack density increment dραn+1 is obtained from the discrete consistency condition
by differentiating fα(σn+1) = 0 for all activated orientations:

∂σfα : dσn+1 + ∂ραfα · dραn+1 = 0, α ∈ Jact (43)

By substituting Eq.41 into Eq.43, we have

∂σfα(σn+1) : Chom : dεn+1 =∂σfα(σn+1) : Chom :
[
2

∑
β∈Jact

dρβn+1Pβ : σn+1

]
− ∂ραfα(σn+1) · dραn+1, α ∈ Jact

(44)

Equivalently,

dραn+1 =
∂σfα(σn+1) : Chom : dεn+1

2
∑
β∈Jact ∂σfα(σn+1) : Chom : ∂σgβ − ∂ραfα(σn+1)

, α ∈ Jact (45)

Note that the number of equations required to expression the relationship between dραn+1

and dεn+1 is equal to the number of activated yield surfaces. Substituting dραn+1 back
into Eq.41 results in a stress/strain relationship that exhibits the desired tangent moduli
used in the Newton-Raphson method:

dσn+1

dεn+1
= Chom :

[
I − 2

∑
α∈Jact

∂σgα ⊗ ∂σfα : Chom
2
∑
β∈Jact ∂σfα : Chom : ∂σgβ − ∂ραfα

]
(46)

The overall steps of the return mapping algorithm including the local Closest Point
Projection that we implemented in ABAQUS for multiple non-smooth yield surfaces
are summarized in Table 1.

Implementation verification
The implementation of the resolution algorithm is checked by comparing the model
predictions obtained at the integration point (with a Matlab code) to those obtained
with the Finite Element Method (one-element Abaqus model). For the tests performed at
the integration point, we simulated pure shear in plane strain condition and confined
compression (oedometer test) by applying strain loads of γ12 = 2% and ε11 = 2%
respectively. All the other strain components were set to zero. Pure shear tests were
simulated with the FEM by applying a ±0.0005m displacement along the edges of a
square with sides of 1m in length. The oedometer test was simulated with the FEM by
applying a −0.002m displacement in direction 1 and by using fixed boundaries on all
the other faces of a cube. The cube edge length was 1m. 200 loading increments were
used for all of the simulations. Table 2 summarizes the material parameters used for
the simulations. Note that these parameters do not correspond to any specific material,
although parameter values fall within the range that would be expected for a granite
rock. In particular, the Young’s modulus, the yield and hardening parameters represent
the behavior of a rock material in tension or compression.
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Table 1. Closest point projection algorithm for multiple non-smooth yield surfaces
implemented in UMAT subroutines for the Abaqus direct solver.

Step Description

1 Get the stored state variables ραn(α = 1, ..., 42); εinn ;σn from the previous
increment n; Abaqus calculates the total strain increment ∆εn+1

2 Initialize εin(0)
n+1 = εinn ; ρ

i(0)
n+1 = ρin

σtrialn+1 = σn +
[
Sm +

∑M
i=1 ρ

i(0)
n+1Pi

]−1

: ∆εn+1

Compute f triali,n+1(σtrialn+1 , ρ
i(0)
n+1) for i ∈ {1, 2, ...,M}, ∆ραn+1 = 0

3 Check the yield criteria
IF: f triali,n+1 ≤ 0 for all i ∈ {1, 2, ...,M} THEN:

(·)n+1 = (·)trn+1, EXIT
ELSE:
J (0)
act = {α ∈ {1, 2, ...,M}|f triali,n+1 > 0}, ∆ρ

α(0)
n+1 = 0

4 Evaluate the inelastic residualR(k)
n+1 from Eq.29

5 Check the convergence of f (k)
α,n+1(σ

(k)
n+1, ρ

α(k−1)
n+1 ) for α ∈ J (k)

act

IF: f (k)
α,n+1 < TOL1 for all α ∈ J (k)

act and ||R(k)
n+1||< TOL2 THEN:

Provide the Jacobian matrix by using Eq.46 to ABAQUS, and EXIT
6 Compute the consistent stiffness matrix by using Eq.35. Introduce Cc and

R
(k)
n+1 in Eq.37.

7 Solve Eq.37 for δραn+1, α ∈ Jact
Update ∆ρ

α(k+1)
n+1 = ∆ρ

α(k)
n+1 + δραn+1

IF: ∆ρ
α(k+1)
n+1 < 0, α ∈ J kact, THEN:

Reset J (k+1)
act = {α ∈ J (k)

act |∆ρ
α(k+1)
n+1 > 0}, Goto 4.

ELSE:
Calculate the inelastic strain increment correction by using Eq.30

8 Update state variables and compute the new trial stress
ε
in(k+1)
n+1 = εinn + δε

in(k+1)
n+1

ρ
α(k+1)
n+1 = ραn + ∆ρ

α(k+1)
n+1 , α ∈ J kact

σ
(k+1)
n+1 =

[
Sm +

∑M
α=1 ρ

α(k+1)
n+1 Pα

]−1

: (εn + dεn+1 − εin(k+1)
n+1 )

Goto 5.

Table 2. Material parameters used for the verification of the implementation of the algorithm

Elasticity Initial State Damage function

E0 ν0 a0 N α kc ηc ko ηo
GPa − L N/L3 − Pa Pa Pa Pa

53.5 0.35 0.05 960 10−5 278.9 116.6 35.9 20.6
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Fig.6 shows the results. For all the cases simulated, both the linear elastic response
and the non-linear damaged response are well captured by the discrete damage model.
The difference between the stress/strain curves obtained at the material point (Matlab)
and in the one-element FEM model (Abaqus) is negligible. Note that the reason why the
stress/strain curve is almost linear in the oedometer test is because the lateral pressure
increases the hardening effects. Fig.6(b) shows the crack density distribution for the
oedometer test. Results show that only mode II crack propagation driven by deviatoric
stress is possible. As a result, the direction normal to the activated crack planes is closer to
the loading direction than the direction normal to the inactivated crack planes . Fig.6(d)
shows the crack density distribution for the pure shear test. During a pure shear path,
principal tension and compression components rotate by 45 degree with respect to the
shear axes 1 and 2. The resistance to tension for brittle material is much less than the
shear resistance, which explains the predominance of crack propagation in planes of
normal oriented by an angle of 45 degrees to the horizontal or vertical. Note that because
the Matlab simulations are done in plane strain and the Abaqus simulations are done in
3D, there is a small discrepancy between the two stress/strain curves at the later stage of
the pure shear test (Fig.6(c)). We conclude that the proposed discrete damage model is
suitable to track anisotropic crack density evolution and that the Closest Point Projection
algorithm implemented in UMAT is accurate.

Damage model Calibration and Numerical Applications

Principle of the calibration algorithm
The proposed discrete damage model depends on 9 constitutive parameters, which can
be grouped into 3 categories: elasticity, initial state, and damage (Table 2). The model
can account for intrinsic anisotropy (i.e. with anisotropy not induced by micro-crack
propagation), if different values are chosen for the reference (initial) microcrack radius
(a0) and the initial number of microcracks N = N

Ωr
for different crack orientations.

By construction of the yield criteria, two independent loading paths are needed in
tension and in compression to calibrate the material parameters (depending whether the
unilateral condition is satisfied or not). If the simulation only involves compressive stress
(respectively tensile stress), the two damage function parameters ko, ηo (respectively
kc, ηc) can be omitted.

We used the Interior Point Algorithm programmed in Matlab to determine the
unknown vector B = (E0, ν0, a0,N , α, kc, ηc, ko, ηo) that minimizes the squared
residual of the distance between experimental results yi and numerical predictions
f(x,B). The residual that is minimized iteratively is defined as:

R(B) =

n∑
i=1

[yi − f(x,B)]2 (47)

Where x stands for the vector of known input variables (e.g., strain or stress, depending
whether the load is controlled in force or displacement). The algorithm is initialized with
an initial guess and a reasonable range of values for the coefficients of the unknown
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Figure 6. Verification and accuracy tests. Comparison of the stress/strain curves obtained at
the material point and with the FEM for an oedometer test (a) and for a pure shear test (c).
The corresponding distributions of damage density are shown in Figures (b) and (d)
respectively.

parameter vector B. Then, the tests with the discrete damage model are simulated at the
material point, and the value of the residual R(B) is updated iteratively. The gradient of
the residual R(B) with respect to each parameter listed in the vector B is calculated.
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Table 3. Model parameters calibrated against triaxial compression tests reported in
Papanikolaou and Kappos (2007) for high strength concrete

Elasticity Initial State Damage function

E0 ν0 a0 N α kc ηc
GPa − L N/L3 − Pa Pa

53.6 0.22 2× 10−4 8178 3.3× 10−5 34.3 615.7

This gradient of residual is used to minimize the difference between numerical and
experimental stress-strain curves, as follows:

Bn+1 = Bn − γn∆R(B) (48)

Where γn is the barrier parameter, which is updated at each iteration step in the Interior
Point Algorithm. The procedure is described in detail in (Byrd et al. 2000; Waltz et al.
2006).

Triaxial compression test for concrete
We first calibrate and validate the discrete damage model against a series of triaxial
compression tests performed on high strength concrete by Papanikolaou and Kappos
(2007). The experimental stress/strain curves obtained with confinements of 4 & 12 MPa
were used for calibration. Experimental data obtained with a confining pressure of 8 MPa
was used for validation. The soil mechanics sign convention was adopted throughout the
paper (with compression counted positive). Note that only the portion of the experimental
data obtained before the peak of the stress/strain peak was used, because the proposed
discrete damage model is only valid for non-interacting cracks. Table 3 summarizes the
values of the calibrated material parameters.

Fig.7(a) shows the results obtained after model calibration for confining pressures of
σ3 = 4, 8&12 MPa. The excellent match between numerical and experimental curves,
especially for the test performed at 8 MPa (used for model validation) show that the
discrete damage model allows representing the non-linear behavior of concrete subject
to compressive damage. Because the yield criteria depend on the mean stress via the term
αTrσ, the model can capture the increase of the yield stress σy with increasing confining
pressure σ3, as can be seen from the evolution of the crack densities in the different
directions of space in Fig.7(b). The discrete damage model highlights the difference of
crack density magnitude among the activated crack families. Overall, the performance of
the discrete damage model for the calibrated parameters is very satisfactory for closed
micro-crack propagation.

With the parameters calibrated above for concrete, we simulated a triaxial compression
test performed under a confinement 4 MPa with the Finite Element Method (FEM).
Following the standards of the American Society for Testing and Materials (ASTM),
we modeled a cylindrical concrete sample of diameter 0.1 m and length 0.2 m. Due
to symmetries, only 1/8 of sample is meshed in Abaqus, as shown in Fig.8. In total,
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Figure 7. Calibration and validation of the discrete damage model parameters against
experimental stress-strain curves obtained during triaxial compression tests performed on
concrete under various confining pressures. (a) Results of tests performed with a confining
pressure of σ3 = 4&12 MPa were used to calibrate the model. Experimental results obtained
for a confining pressure of σ3 = 8 MPa were employed to validate the calibration. (b)
Evolution of the typical damage densities in different directions with the calibrated
parameters, for the three confining pressures.

4,000 hexahedral elements were used. Besides the symmetry boundary conditions, a
zero horizontal displacement (in directions x1 and x2) was imposed at the top surface
(perpendicular to x3 axis), in order to mimic the friction effect between the steel plate
and the concrete sample. After applying a 4 MPa hydrostatic confinement on all the
external boundaries, the top surface was subjected to a vertical displacement of 0.0003
m. Fig.8 shows the crack density distribution for all activated crack families at the end
of the test. By contrast with the oedometer test, the confining pressure is maintained
to a constant value, therefore, more crack families are activated during the triaxial
compression test. As expected, the space variations of crack density differs from one
crack plane orientation to the other. Note however that for all activated crack families,
the highest crack density is reached at the edge of the sample that is in contact with
the steel plate. This phenomenon is a frictional boundary effect, which explains macro
fracture initiation in isotropic and homogeneous samples. It can also be noted that for all
damage directions, activated cracks concentrate in the center of the sample. This result is
in agreement with experimental measures of damage based on acoustic emission velocity
and lateral deformation. Given that cracks of different directions are superposed, it is
clear that the inner part of the sample is the most damaged during the test. The proposed
discrete damage model provides a detailed description of the fabric of materials damaged
in compression with only 3 damage parameters (α, kc, ηc), 2 initial crack parameters (a0

and N ) and 2 elasticity parameters (E0 and ν0). This is a significant gain of information
compared to former damage models implemented in FEM, which are formulated with
second-order damage tensor at most (Xu and Arson 2015; Jin et al. 2016).
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Figure 8. FEM simulation of a triaxial compression test performed on an ASTM concrete
sample subjected to a 4 MPa confining pressure. Isosurfaces of the crack densities for the
activated crack families.
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Table 4. Model parameters calibrated against uniaxial tension tests reported in Bazant and
Pijaudier-Cabot (1989) for concrete.

Elasticity Initial State Damage function

E0 ν0 a0 N α ko ηo
GPa − L N/L3 − Pa Pa

27.0 0.23 4.8× 10−3 485 0.5× 10−5 95.0 0.095

Hassanzadeh’s direct tension test for concrete

In most brittle materials, uniaxial tension results in a highly localized macroscopic
crack propagation followed by tensile failure. The stress-strain curve recorded during
uniaxial tension tests cannot truly reflect the material behavior because the strain is
not uniform throughout the sample. That is the reason why Bazant and Pijaudier-Cabot
(1989) designed a specific testing apparatus, in which the concrete sample is glued to
parallel thin-steel rods. The testing procedure allows obtaining the stress strain curve
even when micro-cracks are diffused throughout the sample. We used the hardening
portion of the stress/strain curves reported in Bazant and Pijaudier-Cabot (1989) in order
to calibrate the discrete damage model for open crack propagation modes (i.e., when
the unilateral condition is satisfied). Calibration results are given in Table 4 and shown
in Fig.9(a), in which the soil mechanics sign convention was adopted (compression
counted positive). Concrete behaves as a perfectly plastic material prior to yielding. The
hardening behavior is captured, but as explained before, the post-peak behavior cannot
be represented with the dilute homogenization scheme adopted here. Note that because
all the cracks are initially closed, the cracks that propagate during the test are those in the
planes perpendicular to the loading direction, as can be seen from the evolution of ρ1 in
Fig.9(b).

In order to demonstrate the capability of the proposed model to predict the behavior of
brittle solids in tension, we simulated Hassanzadeh’s direct tension test Hassanzadeh
(1992). A four-edge notched specimen was assigned the calibrated parameters listed
in Table 4. The specimen geometry and the applied boundary conditions are shown in
Fig.10. Due to symmetries, only 1/8 of sample was modeled. A vertical displacement
field was imposed at the bottom face of the domain (u = 0.01 mm). We used a coarse
mesh with 9,943 3D hexahedral elements and a fine mesh with 35,550 elements.

The isosurfaces of horizontal crack density (i.e. density of crack planes perpendicular
to the tensile loading axis) are shown in Fig.11 for both the coarse and fine meshes.
Of course, in this purely hypothetical simulation test the high magnitude reached by ρ3

is not realistic: physically, a macroscopic horizontal fracture would propagate during
the test, which cannot be captured by using a dilute scheme homogenization scheme.
Interestingly, results show that micro-cracks propagate from the edges to the center of
the central part of the sample, which is in agreement with experimental observations.
Note that the maximum crack density calculated with the coarse mesh is less than with
the fine mesh, and the extent of the damaged zone is larger with the coarse mesh than with
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Figure 9. Calibration of the discrete damage model against uniaxial tension experimental
data Bazant and Pijaudier-Cabot (1989) for open crack propagation.
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Figure 10. Hassanzadeh’s direct tension test: problem definition, simulation domain and
boundary conditions.

the fine mesh. To avoid this problem of mesh-dependency, a non-local discrete damage
model formulation is required. Such a regularization work goes beyond the scope of the
present study, but is currently undertaken by the authors. For both mesh refinements, the
extent of the damaged zone exceeded the size of a single Finite Element. In addition to
the crack families perpendicular to the loading direction (x3-axis), four crack sets were
activated during the test, as shown in Fig.12. As expected, these four directions are the
closest to the loading direction. Overall, the discrete damage model can predict micro
crack propagation in tension at a very low yield stress. The authors work on combining
the model implemented in FEM with Cohesive Zone Elements Jin et al. (2016); Jin and
Arson (2016) or XFEM Comi et al. (2007), which will allow simulating the evolution of
the damage process zone evolution around macroscopic fractures.
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Figure 12. Hassanzadeh’s direct tension test: Isosurfaces of damage density for
non-horizontal activated crack families obtained from fine mesh results.

Plane stress tension test for a fiber-reinforced composite

In the following, we study the activation and propagation of crack sets in a fiber-
reinforced composite subjected to a plane stress tensile test. The fibers are assumed to
have a much higher tensile strength than the matrix, and are modeled as linear elastic
materials. The matrix material is assigned the discrete damage model, in which only
open crack propagation modes are considered. The material parameters adopted in the
simulations are listed in Table 5. Note that the matrix material’s Young’s modulus is less
than that of the fibers. We compare the results obtained when fibers are either aligned or
perpendicular to the direction of the applied tension to those obtained when the fibers are
all oriented by an angle of 45o to the tensile direction, as shown in Fig.13. Simulations
were done in 3D. The elements’ thickness was 0.1 m. The same boundary conditions
were adopted in both cases. Hexahedral elements with an average edge size of 0.025

Prepared using sagej.cls



26 Journal Title XX(X)

Table 5. Model parameters used in the simulation of tension tests on a fiber-reinforced
composite.

Elasticity (fibers) Elasticity (matrix) Initial State Damage function

E0 ν0 E ν a0 N α ko ηo
GPa − GPa − L N/L3 − Pa Pa

50 0.3 35 0.25 0.001 120 2× 10−5 20 24

m were used in both cases. The mesh was structured for the simulation of tension in
the axis of the fibers, and random for the simulation of tension at 45o from the axis
of the fibers (due to the complexity of the geometry). At the interface between the
fibers and the matrix, nodes were shared, i.e. the two materials were perfectly bonded
so that the interface friction was not considered. The composite plates were assumed
to be symmetric about the horizontal and vertical axes, therefore fixed displacements
were applied at the bottom and left boundaries of the domain. A displacement of 0.01
mm was applied normal to the top boundary. On the right boundary, a zero horizontal
displacement and a zero vertical stress were imposed.

x

y

u=0

0.5 m

0.5 m

0.5 m

0.5 m

1 m

1 m

45°

45°

0.1 m

Figure 13. Problem definition and boundary conditions for the simulation of tension tests on
a fiber-reinforced composite.

Fig.14 shows the distributions of horizontal and vertical stress for both composites.
Note that results are displayed in a plane located at at mid-thickness of the plates in the
x3 direction (thickness direction). As expected, fibers bear most of the load applied due to
their higher stiffness. Note that when fibers are aligned with a principal stress direction,
all the stress in that direction concentrates in the fibers. For example, the vertical stress
(in x2 direction) is concentrated along the vertical fibers, and the horizontal stress (in
x1 direction) is concentrated along the horizontal fibers. When tension is applied at an
angle of 45o to the fibers, the maximum vertical stress reached in the fibers is less than
in vertical fibers, and the maximum horizontal stress reached in the fibers is more than in
horizontal fibers.
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Figure 14. Distribution of horizontal and vertical stress in composites with various
orientations of fiber reinforcements.

The effect of fiber orientation on the distribution of cracks in the matrix material is
illustrated in Fig.15. Note the color code used to represent the families of activated crack
planes: ρ1, ρ2 in green, ρ4 in blue and ρ14 in red. The variations of ρ4 (respectively ρ14)
inside the domain are similar to those of ρ5,25,26 (respectivley ρ15−17,36−39), due to the
symmetry in crack orientations. ANote that all the crack families that are activated during
the test are inside the plane of x1, x2, or have a very small component in axis x3. The
smallest and largest of all possible values reached by the crack densities are obtained
at the intersection of the inclined fiber reinforcements. Cracks also concentrate at the
boundary, close to the inclined fibers. Crack densities are more uniformly distributed
in the composites with non-inclined fibers. This example illustrates the benefits of
accounting for fiber orientation in the design of thin structures subjected to tension,
such as the walls of pressurized vessels. In this particular case, putting fibers in the
axis of the tensile load will allow reducing the load borne by the matrix material, and
therefore, to reduce the density of tensile cracks. Fiber intersections are the parts of the
composite plate that are the most exposed to tensile damage, and need to be checked in
priority for monitoring purposes. The proposed discrete damage model thus provides
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useful predictions of crack patterns in brittle materials subject to mixed mode crack
propagation, with a small number of material parameters which all have a sound physical
meaning.

Conclusions

The discrete damage model presented in this paper is based on a dilute homogenization
scheme, which allows summing up the energy potentials stored in the displacement jumps
of crack families of different orientations to represent the energy stored at the scale of
the Representative Volume Element(RVE). 42 microplane orientations are considered.
Closed cracks propagate in pure mode II, whereas open cracks propagate in mixed mode
(I/II). The elastic domain is at the intersection of the yield surfaces of the activated crack
families. These surfaces are not smooth. In order to solve for the 42 crack densities,
a Closest Point Projection algorithm is adopted locally. The irreversible strains at the
RVE scale are obtained by using a Newton-Raphson algorithm. To the authors’ best
knowledge, this is the first time that a discrete damage model accounting for two
crack propagation modes is successfully implemented in a Finite Element program.
The proposed damage model was rigorously calibrated for both compressive and tensile
stress paths. Simulations of triaxial compression tests showed that the transition between
brittle and ductile behavior at increasing confining pressure can be captured. The cracks’
density, orientation and location predicted in the simulations are in agreement with
experimental observations made during compression and tension tests, and accurately
show the difference between tensile and compressive strength. Plane stress tension
tests simulated for a fiber-reinforced brittle material also demonstrated that the model
can be used to interpret crack patterns, design composite structures and recommend
reparation techniques for structural elements subjected to multiple damage mechanisms.
This is a significant asset compared to the capabilities of former Continuum Damage
Mechanics models used in FEMs. More work is needed to regularize the model, avoid
mesh dependence and extend the formulation to interacting sets of micro-cracks.
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