161 research outputs found

    Synthesis, Biological Evaluation of Fluorescent 23-Hydroxybetulinic Acid Probes, and Their Cellular Localization Studies

    Get PDF
    © 2018 American Chemical Society. 23-Hydroxybetulinic acid (23-HBA) is a complex lupane triterpenoid, which has attracted increasing attention as an anticancer agent. However, its detailed mechanism of anticancer action remains elusive so far. To reveal its anticancer mode of action, a series of fluorescent 23-HBA derivatives conjugated with coumarin dyes were designed, synthesized, and evaluated for their antiproliferative activities. Subcellular localization and uptake profile studies of representative fluorescent 23-HBA probe 26c were performed in B16F10 cells, and the results suggested that probe 26c was rapidly taken up into B10F10 cells in a dose-dependent manner and mitochondrion was the main site of its accumulation. Further mode of action studies implied that the mitochondrial pathway was involved in 23-HBA-mediated apoptosis. Together, our results provided new clues for revealing the molecular mechanism of natural product 23-HBA for its further development into an antitumor agent

    RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression

    Get PDF
    Background: Melanoma is known to be radioresistant and traditional treatments have been intractable. Therefore, novel approaches are required to improve the therapeutic efficacy of melanoma treatment. In our study, gold nanorods conjugated with Arg-Gly-Asp peptides (RGD-GNRs) were used as a sensitizer to enhance the response of melanoma cells to 6 mV radiation. Methods and materials: A375 melanoma cells were treated by gold nanorods or RGD-GNRs with or without irradiation. The antiproliferative impact of the treatments was measured by MTT assay. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle data were measured by flow cytometry. Integrin alpha(v)beta(3) expression was also investigated by flow cytometry. Results: Addition of RGD-GNRs enhanced the radiosensitivity of A375 cells with a dose-modifying factor of 1.35, and enhanced radiation-induced apoptosis. DNA flow cytometric analysis indicated that RGD-GNRs plus irradiation induced significant G2/M phase arrest in A375 cells. Both spontaneous and radiation-induced expressions of integrin alpha(v)beta(3) were downregulated by RGD-GNRs. Conclusion: Our study indicated that RGD-GNRs could sensitize melanoma A375 cells to irradiation. It was hypothesized that this was mainly through downregulation of radiation-induced alpha(v)beta(3), in addition to induction of a higher proportion of cells within the G2/M phase. The combination of RGD-GNRs and radiation needs further investigation.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000302718200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Nanoscience & NanotechnologyPharmacology & PharmacySCI(E)22ARTICLE915-924

    Infection of inbred BALB/c and C57BL/6 and outbred Institute of Cancer Research mice with the emerging H7N9 avian influenza virus

    Get PDF
    A new avian-origin influenza virus A (H7N9) recently crossed the species barrier and infected humans; therefore, there is an urgent need to establish mammalian animal models for studying the pathogenic mechanism of this strain and the immunological response. In this study, we attempted to develop mouse models of H7N9 infection because mice are traditionally the most convenient models for studying influenza viruses. We showed that the novel A (H7N9) virus isolated from a patient could infect inbred BALB/c and C57BL/6 mice as well as outbred Institute of Cancer Research (ICR) mice. The amount of bodyweight lost showed differences at 7 days post infection (d.p.i.) (BALB/c mice 30%, C57BL/6 and ICR mice approximately 20%), and the lung indexes were increased both at 3 d.p.i. and at 7 d.p.i.. Immunohistochemistry demonstrated the existence of the H7N9 viruses in the lungs of the infected mice, and these findings were verified by quantitative real-time polymerase chain reaction (RT-PCR) and 50% tissue culture infectious dose (TCID50) detection at 3 d.p.i. and 7 d.p.i.. Histopathological changes occurred in the infected lungs, including pulmonary interstitial inflammatory lesions, pulmonary oedema and haemorrhages. Furthermore, because the most clinically severe cases were in elderly patients, we analysed the H7N9 infections in both young and old ICR mice. The old ICR mice showed more severe infections with more bodyweight lost and a higher lung index than the young ICR mice. Compared with the young ICR mice, the old mice showed a delayed clearance of the H7N9 virus and higher inflammation in the lungs. Thus, old ICR mice could partially mimic the more severe illness in elderly patients. </p

    A high-stability single pumped L-band superfluorescent fiber source for the fiber optic gyroscope

    Get PDF
    In this paper, a simple single-backward configuration with a section of un-pump fiber is presented to achieve a stable L-band superfluorescent fiber source (SFS). The effects of the structural parameters on the output characteristics of the L-band SFS in terms of output spectrum, mean wavelength, and linewidth are theoretically examined. By selecting suitable structure parameters, an L-band SFS with mean wavelength insensitive to pump power is achieved under a pump power of 190mW, corresponding to a mean wavelength of 1583.20nm, an output power of 47mW, and a spectral linewidth of 49.6nm. The proposed L-band SFS design shows its tremendous advantages as simple structure and good performances that make it be useful in WDM system, fiber optic gyroscopes and fiber sensor systems applications

    Incorporation of a machine learning pathological diagnosis algorithm into the thyroid ultrasound imaging data improves the diagnosis risk of malignant thyroid nodules

    Get PDF
    ObjectiveThis study aimed at establishing a new model to predict malignant thyroid nodules using machine learning algorithms.MethodsA retrospective study was performed on 274 patients with thyroid nodules who underwent fine-needle aspiration (FNA) cytology or surgery from October 2018 to 2020 in Xianyang Central Hospital. The least absolute shrinkage and selection operator (lasso) regression analysis and logistic analysis were applied to screen and identified variables. Six machine learning algorithms, including Decision Tree (DT), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Naive Bayes Classifier (NBC), Random Forest (RF), and Logistic Regression (LR), were employed and compared in constructing the predictive model, coupled with preoperative clinical characteristics and ultrasound features. Internal validation was performed by using 10-fold cross-validation. The performance of the model was measured by the area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, F1 score, Shapley additive explanations (SHAP) plot, feature importance, and correlation of features. The best cutoff value for risk stratification was identified by probability density function (PDF) and clinical utility curve (CUC).ResultsThe malignant rate of thyroid nodules in the study cohort was 53.2%. The predictive models are constructed by age, margin, shape, echogenic foci, echogenicity, and lymph nodes. The XGBoost model was significantly superior to any one of the machine learning models, with an AUC value of 0.829. According to the PDF and CUC, we recommended that 51% probability be used as a threshold for determining the risk stratification of malignant nodules, where about 85.6% of patients with malignant nodules could be detected. Meanwhile, approximately 89.8% of unnecessary biopsy procedures would be saved. Finally, an online web risk calculator has been built to estimate the personal likelihood of malignant thyroid nodules based on the best-performing ML-ed model of XGBoost.ConclusionsCombining clinical characteristics and features of ultrasound images, ML algorithms can achieve reliable prediction of malignant thyroid nodules. The online web risk calculator based on the XGBoost model can easily identify in real-time the probability of malignant thyroid nodules, which can assist clinicians to formulate individualized management strategies for patients

    A machine learning model for visualization and dynamic clinical prediction of stroke recurrence in acute ischemic stroke patients: A real-world retrospective study

    Get PDF
    Background and purposeRecurrent stroke accounts for 25–30% of all preventable strokes, and this study was conducted to establish a machine learning-based clinical predictive rice idol for predicting stroke recurrence within 1 year in patients with acute ischemic stroke (AIS).MethodsA total of 645 AIS patients at The Second Affiliated Hospital of Xuzhou Medical University were screened, included and followed up for 1 year for comprehensive clinical data. Univariate and multivariate logistic regression (LR) were used to screen the risk factors of stroke recurrence. The data set was randomly divided into training set and test set according to the ratio of 7:3, and the following six prediction models were established by machine algorithm: random forest (RF), Naive Bayes model (NBC), decision tree (DT), extreme gradient boosting (XGB), gradient boosting machine (GBM) and LR. The model with the strongest prediction performance was selected by 10-fold cross-validation and receiver operating characteristic (ROC) curves, and the models were investigated for interpretability by SHAP. Finally, the models were constructed to be visualized using a web calculator.ResultsLogistic regression analysis showed that right hemisphere, homocysteine (HCY), C-reactive protein (CRP), and stroke severity (SS) were independent risk factors for the development of stroke recurrence in AIS patients. In 10-fold cross-validation, area under curve (AUC) ranked from 0.777 to 0.959. In ROC curve analysis, AUC ranged from 0.887 to 0.946. RF model has the best ability to predict stroke recurrence, and HCY has the largest contribution to the model. A web-based calculator https://mlmedicine-re-stroke2-re-stroke2-baylee.streamlitapp.com/ has been developed accordingly.ConclusionThis study identified four independent risk factors affecting recurrence within 1 year in stroke patients, and the constructed RF-based prediction model had good performance

    Can Sophie's Choice Be Adequately Captured by Cold Computation of Minimizing Losses? An fMRI Study of Vital Loss Decisions

    Get PDF
    The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI), this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial), both losses are vital (vital-vital), or one loss is trivial and the other is vital (vital-trivial). Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions
    corecore