581 research outputs found

    Automatic Structural Scene Digitalization

    Get PDF
    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.Comment: paper submitted to PloS On

    Icing and Anti-Icing of Railway Contact Wires

    Get PDF

    Climate change impact on China food security in 2050

    Get PDF
    Climate change is now affecting global agriculture and food production worldwide. Nonetheless the direct link between climate change and food security at the national scale is poorly understood. Here we simulated the effect of climate change on food security in China using the CERES crop models and the IPCC SRES A2 and B2 scenarios including CO2 fertilization effect. Models took into account population size, urbanization rate, cropland area, cropping intensity and technology development. Our results predict that food crop yield will increase +3-11 % under A2 scenario and +4 % under B2 scenario during 2030-2050, despite disparities among individual crops. As a consequence China will be able to achieve a production of 572 and 615 MT in 2030, then 635 and 646 MT in 2050 under A2 and B2 scenarios, respectively. In 2030 the food security index (FSI) will drop from +24 % in 2009 to -4.5 % and +10.2 % under A2 and B2 scenarios, respectively. In 2050, however, the FSI is predicted to increase to +7.1 % and +20.0 % under A2 and B2 scenarios, respectively, but this increase will be achieved only with the projected decrease of Chinese population. We conclude that 1) the proposed food security index is a simple yet powerful tool for food security analysis; (2) yield growth rate is a much better indicator of food security than yield per se; and (3) climate change only has a moderate positive effect on food security as compared to other factors such as cropland area, population growth, socio-economic pathway and technology development. Relevant policy options and research topics are suggested accordingly

    BPTF promotes tumor growth and predicts poor prognosis in lung adenocarcinomas.

    Get PDF
    BPTF, a subunit of NURF, is well known to be involved in the development of eukaryotic cell, but little is known about its roles in cancers, especially in non-small-cell lung cancer (NSCLC). Here we showed that BPTF was specifically overexpressed in NSCLC cell lines and lung adenocarcinoma tissues. Knockdown of BPTF by siRNA significantly inhibited cell proliferation, induced cell apoptosis and arrested cell cycle progress from G1 to S phase. We also found that BPTF knockdown downregulated the expression of the phosphorylated Erk1/2, PI3K and Akt proteins and induced the cleavage of caspase-8, caspase-7 and PARP proteins, thereby inhibiting the MAPK and PI3K/AKT signaling and activating apoptotic pathway. BPTF knockdown by siRNA also upregulated the cell cycle inhibitors such as p21 and p18 but inhibited the expression of cyclin D, phospho-Rb and phospho-cdc2 in lung cancer cells. Moreover, BPTF knockdown by its specific shRNA inhibited lung cancer growth in vivo in the xenografts of A549 cells accompanied by the suppression of VEGF, p-Erk and p-Akt expression. Immunohistochemical assay for tumor tissue microarrays of lung tumor tissues showed that BPTF overexpression predicted a poor prognosis in the patients with lung adenocarcinomas. Therefore, our data indicate that BPTF plays an essential role in cell growth and survival by targeting multiply signaling pathways in human lung cancers

    Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism

    Full text link
    [EN] With the development of the market globalisation trend and increasing customer orientation, many uncertainties have entered into the manufacturing context. To create an agile response to the emergence of and change in conditions, this article presents a dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. The dynamic re-scheduling function is the result of cooperation among several autonomous bio-inspired manufacturing cells with computing power and optimisation capabilities. The dynamic re-scheduling model is designed based on hormone regulation principles to agilely respond to the frequent occurrence of unexpected disturbances at the shop floor level. The cooperation mechanisms of the dynamic re-scheduling model are described in detail, and a test bed is set up to simulate and verify the dynamic re-scheduling approach. The results verify that the proposed method is able to improve the performances and enhance the stability of a manufacturing systemThis research was sponsored by the National Natural Science Foundation of China (NSFC) under Grant No. 51175262 and No. 61105114 and the Jiangsu Province Science Foundation for Excellent Youths under Grant BK20121011. This research was also sponsored by the CASES project supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under grant agreement No. 294931Zheng, K.; Tang, D.; Giret Boggino, AS.; Gu, W.; Wu, X. (2015). Dynamic shop floor re-scheduling approach inspired by a neuroendocrine regulation mechanism. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 229(S1):121-134. https://doi.org/10.1177/0954405414558699S121134229S1Maravelias, C. T., & Sung, C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12), 1919-1930. doi:10.1016/j.compchemeng.2009.06.007Yandra, & Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous population for solving flowshop scheduling problems. International Journal of Computer Integrated Manufacturing, 20(5), 465-477. doi:10.1080/09511920601160288Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultaneously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114-123. doi:10.1016/j.cirpj.2009.10.001Renna, P. (2011). Multi-agent based scheduling in manufacturing cells in a dynamic environment. International Journal of Production Research, 49(5), 1285-1301. doi:10.1080/00207543.2010.518736Qin, L., & Kan, S. (2013). Production Dynamic Scheduling Method Based on Improved Contract Net of Multi-agent. Advances in Intelligent Systems and Computing, 929-936. doi:10.1007/978-3-642-31656-2_128Iwamura, K., Mayumi, N., Tanimizu, Y., & Sugimura, N. (2010). A Study on Real-time Scheduling for Holonic Manufacturing Systems - Application of Reinforcement Learning -. Service Robotics and Mechatronics, 201-204. doi:10.1007/978-1-84882-694-6_35Jana, T. K., Bairagi, B., Paul, S., Sarkar, B., & Saha, J. (2013). Dynamic schedule execution in an agent based holonic manufacturing system. Journal of Manufacturing Systems, 32(4), 801-816. doi:10.1016/j.jmsy.2013.07.004Dan, Z., Cai, L., & Zheng, L. (2009). Improved multi-agent system for the vehicle routing problem with time windows. Tsinghua Science and Technology, 14(3), 407-412. doi:10.1016/s1007-0214(09)70058-6Hsieh, F.-S. (2009). Developing cooperation mechanism for multi-agent systems with Petri nets. Engineering Applications of Artificial Intelligence, 22(4-5), 616-627. doi:10.1016/j.engappai.2009.02.006Tang, D., Gu, W., Wang, L., & Zheng, K. (2011). A neuroendocrine-inspired approach for adaptive manufacturing system control. International Journal of Production Research, 49(5), 1255-1268. doi:10.1080/00207543.2010.518734Keenan, D. M., Licinio, J., & Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. Proceedings of the National Academy of Sciences, 98(7), 4028-4033. doi:10.1073/pnas.051624198Farhy, L. S. (2004). Modeling of Oscillations in Endocrine Networks with Feedback. Numerical Computer Methods, Part E, 54-81. doi:10.1016/s0076-6879(04)84005-9Cavalieri, S., Macchi, M., & Valckenaers, P. (2003). Journal of Intelligent Manufacturing, 14(1), 43-58. doi:10.1023/a:1022287212706Leitão, P., & Restivo, F. (2008). A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing, 24(5), 625-634. doi:10.1016/j.rcim.2007.09.005Bal, M., & Hashemipour, M. (2009). Virtual factory approach for implementation of holonic control in industrial applications: A case study in die-casting industry. Robotics and Computer-Integrated Manufacturing, 25(3), 570-581. doi:10.1016/j.rcim.2008.03.020Leitao P. An agile and adaptive holonic architecture for manufacturing control. PhD Thesis, University of Porto, Porto, 2004

    Symmetric implicational restriction method of fuzzy inference

    Get PDF
    summary:The symmetric implicational method is revealed from a different perspective based upon the restriction theory, which results in a novel fuzzy inference scheme called the symmetric implicational restriction method. Initially, the SIR-principles are put forward, which constitute optimized versions of the triple I restriction inference mechanism. Next, the existential requirements of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved from some properties of fuzzy implications. The conditions are obtained for the supremum to become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are provided, and it is shown that the new method is better than the triple I restriction method, because the former is able to let the inference more compact, and lead to more and superior particular inference schemes

    A DNA Vaccine Encoding the VAA Gene of Vibrio anguillarum Induces a Protective Immune Response in Flounder

    Get PDF
    Vibrio anguillarum is a pathogenic bacterium that infects flounder resulting in significant losses in the aquaculture industry. The VAA protein previously identified in flounder is associated with a role in immune protection within these fish. In the present study, a recombinant DNA plasmid encoding the VAA gene of V. anguillarum was constructed and its potential as a DNA vaccine, to prevent the infection of V. anguillarum in flounder fish, investigated. We verified the expression of the VAA protein both in vitro in cell lines and in vivo in flounder fish. The protective effects of pcDNA3.1-VAA (pVAA) were analyzed by determination of the percentage of sIgM+, CD4-1+, CD4-2+, CD8β+ lymphocytes, and the production of VAA-specific antibodies in flounder following their immunization with the DNA vaccine. Histopathological changes in immune related tissues, bacterial load, and relative percentage survival rates of flounder post-challenge with V. anguillarum, were all investigated to assess the efficacy of the pVAA DNA vaccine candidate. Fish intramuscularly immunized with pVAA showed a significant increase in CD4-1+, CD4-2+, and CD8β+ T lymphocytes at days 9, 11, and 14 post-vaccination, reaching peak T-cell levels at days 11 or 14 post-immunization. The percentage of sIgM+ lymphocytes reached peak levels at weeks 4–5 post-immunization. Specific anti-V. anguillarum or anti-rVAA antibodies were induced in inoculated fish at days 28–35 post-immunization. The liver of vaccinated flounder exhibited only slight histopathological changes compared with a significant pathology observed in control immunized fish. Additionally, a lower bacterial burden in the liver, spleen, and kidney were observed in pVAA protected fish in response to bacterial challenge, compared with pcDNA3.1 vector control injected fish. Moreover, the pVAA vaccine confers a relative percentage survival of 50.00% following V. anguillarum infection. In summary, this is the first study indicating an initial induction of the T lymphocyte response, followed by B lymphocyte induction of specific antibodies as a result of DNA immunization of flounder. This signifies the important potential of pVAA as a DNA vaccine candidate for the control of V. anguillarum infection

    Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision

    Full text link
    Predicting human motion behavior in a crowd is important for many applications, ranging from the natural navigation of autonomous vehicles to intelligent security systems of video surveillance. All the previous works model and predict the trajectory with a single resolution, which is rather inefficient and difficult to simultaneously exploit the long-range information (e.g., the destination of the trajectory), and the short-range information (e.g., the walking direction and speed at a certain time) of the motion behavior. In this paper, we propose a temporal pyramid network for pedestrian trajectory prediction through a squeeze modulation and a dilation modulation. Our hierarchical framework builds a feature pyramid with increasingly richer temporal information from top to bottom, which can better capture the motion behavior at various tempos. Furthermore, we propose a coarse-to-fine fusion strategy with multi-supervision. By progressively merging the top coarse features of global context to the bottom fine features of rich local context, our method can fully exploit both the long-range and short-range information of the trajectory. Experimental results on several benchmarks demonstrate the superiority of our method.Comment: 9 pages, 5 figure
    corecore