187 research outputs found

    Quantitative spectroscopic analysis of heterogeneous mixtures: the correction of multiplicative effects caused by variations in physical properties of samples

    Get PDF
    Spectral measurements of complex heterogeneous types of mixture samples are often affected by significant multiplicative effects resulting from light scattering, due to physical variations (e.g. particle size and shape, sample packing and sample surface, etc.) inherent within the individual samples. Therefore, the separation of the spectral contributions due to variations in chemical compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the multiplicative parameters accounting for multiplicative effects in each measured spectrum, and hence mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of heterogeneous samples. The basic assumption of the proposed method is that light scattering due to physical variations has the same effects on the spectral contributions of each of the spectroscopically active chemical component in the same sample mixture. Based on this underlying assumption, the proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple quadratic programming problem. The performance of the proposed method has been tested on two publicly available benchmark data sets (i.e. near-infrared total diffuse transmittance spectra of four-component suspension samples and near infrared spectral data of meat samples) and compared with some empirical approaches designed for the same purpose. It was found that the proposed method provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture samples can be achieved through the combination of spectroscopic techniques with smart modeling methodology

    Nuclear symmetry potential in the relativistic impulse approximation

    Get PDF
    Using the relativistic impulse approximation with the Love-Franey \textsl{NN} scattering amplitude developed by Murdock and Horowitz, we investigate the low-energy (100 MeV≤Ekin≤400\leq E_{\mathrm{kin}}\leq 400 MeV) behavior of the nucleon Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. Furthermore,the obtained energy and density dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent MDI interaction with x=0x=0, which has been found to describe reasonably both the isospin diffusion data from heavy-ion collisions and the empirical neutron-skin thickness of 208^{208} Pb.Comment: 8 pages, 5 figures, revised version to appear in PR

    Geraniol attenuates virulence factors by inhibiting quorum sensing of Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause severe respiratory tract infections. Geraniol, a chemical component of essential oils, has antimicrobial and anti-inflammatory activities, along with low toxicity. However, the effect and mechanism of geraniol against P. aeruginosa virulence factors are rarely studied. In this study, we investigated the quorum sensing (QS) inhibitory effects and mechanisms of geraniol against P. aeruginosa PAO1, using physiological and biochemical techniques, quantitative reverse transcription polymerase chain reaction, and transcriptomics. Geraniol slightly affected P. aeruginosa PAO1 growth, prolonged the lag phase, and delayed growth periods in a concentration-dependent manner. Geraniol inhibited three QS systems of P. aeruginosa, las, rhl, and pqs by suppressing the expression level of their key genes, including the three signal synthetase encoding genes of lasI, rhlI, and pqsABCDEH, and the corresponding signal receptor encoding genes of lasR, rhlR, and pqsR. Geraniol also suppressed certain virulence genes regulated by these three QS systems, including rhlABC, lasAB, lecAB, phzABMS, and pelABG, resulting in the attenuation of the related virulence factors, rhamnolipids, exoprotease LasA, elastase, lectin, pyocyanin, and biofilm. In conclusion, geraniol can suppress the virulence factors of P. aeruginosa PAO1 by inhibiting the three QS systems of las, rhl, and pqs. This study is significant for improving the treatment of bacterial infections caused by P. aeruginosa

    Effects of mGluR5 Antagonists on Parkinson's Patients With L-Dopa-Induced Dyskinesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: Modulation of Metabotropic glutamate receptor 5 (mGluR5) may be a novel therapeutic approach to manage Parkinson's disease (PD) Patients with L-dopa-induced dyskinesia (LID).Objectives: The objective of this meta-analysis was to evaluate the effects of mGluR5 antagonists for the treatment of LID patients.Methods: Several electronic databases were consulted up to July 30, 2017. Randomized clinical trials (RCTs) that compared mGluR5 antagonists vs. placebo in LID patients were included. Pooled weighted mean difference (WMD) with 95% confidence intervals (CIs) were calculated using random-effects models.Results: Nine trials including 776 patients met all inclusion criteria. We pooled the whole data and found apparent difference between mGluR5 antagonists and placebo in terms of mAIMS (p = 0.010). However, there was no significant improvements on antidyskinetic in terms of LFADLDS (p = 0.42) and UPDRS Part IV (p = 0.20). Meanwhile, the effect size of UPDRS part III was similar in mGluR5 antagonist groups with in placebo groups (p = 0.25). Adverse events incidence was higher with mGluR5 antagonists than with placebo, especially at the expense of increased dizziness (16.3 vs. 4.3%), visual hallucination (10.1 vs. 1.1%), or fatigue (10.1 vs. 4.8%).Conclusions: mGluR5 antagonists had a greater treatment effect on the mAIMS in LID patients, however, there was no improvements on antidyskinetic in terms of LFADLDS and UPDRS Part IV compared with placebo. According to these results, we unable to recommend mGluR5 antagonists for the routine treatment of LID patients right now

    Diagnostic and prognostic value of galactose-deficient IgA1 in patients with IgA nephropathy: an updated systematic review with meta-analysis

    Get PDF
    ObjectivesGalactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN), a leading renal disease without noninvasive assessment options. This updated systematic review aimed to determine the diagnostic and prognostic value of Gd-IgA1 assessment in biological fluids in patients with IgAN.MethodsPRISMA guidelines were followed in this review. We searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disc, VIP Information/China Science and Technology Journal Database, and WANFANG for studies published between database inception and January 31, 2023. Eligible studies that evaluated aberrant IgA1 glycosylation in IgAN patients relative to controls were identified, and random effects meta-analyses were used to compare Gd-IgA1 levels in different groups. The quality of the evidence was assessed using the Newcastle-Ottawa Scale. This study was registered on PROSPERO (CRD42022375246).FindingsOf the 2727 records identified, 50 were eligible and had available data. The mean Newcastle-Ottawa Scale score was 7.1 (range, 6–8). Data synthesis suggested that IgAN patients had higher levels of blood and/or urine Gd-IgA1 compared with healthy controls (standard mean difference [SMD]=1.43, 95% confidence interval [CI]=1.19−1.68, P<0.00001), IgA vasculitis patients (SMD=0.58, 95% CI=0.22−0.94, P=0.002), and other kidney disease patients (SMD=1.06, 95% CI=0.79−1.33, P<0.00001). Moreover, patients with IgAN had similar levels of serum Gd-IgA1 compared to first-degree relatives (SMD=0.38, 95% CI= -0.04−0.81, P=0.08) and IgA vasculitis with nephritis patients (SMD=0.12, 95% CI= -0.04−0.29, P=0.14). In addition, ten studies demonstrated significant differences in serum Gd-IgA1 levels in patients with mild and severe IgAN (SMD= -0.37, 95% CI= -0.64−-0.09, P=0.009).ConclusionsHigh serum and urine Gd-IgA1 levels suggest a diagnosis of IgAN and a poor prognosis for patients with this immunological disorder. Future studies should use more reliable and reproducible methods to determine Gd-IgA1 levels.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022375246, identifier CRD42022375246

    Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives

    Get PDF
    Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment

    Exposures to particulate matters and childhood sleep disorders—A large study in three provinces in China

    Get PDF
    Objectives: Evidence on the link between long-term ambient particulate matter (PM) exposures and childhood sleep disorders were scarce. We examined the associations between long-term exposures to PM2.5 and PM1 (PM with an aerodynamic equivalent diameter <2.5 μm and <1 μm, respectively) with sleep disorders in children. Methods: We performed a population-based cross-sectional survey in 177,263 children aged 6 to 18 years in 14 Chinese cities during 2012–2018. A satellite-based spatiotemporal model was employed to estimate four-year annual average PM2.5 and PM1 exposures at residential and school addresses. Parents or guardians completed a checklist using the Sleep Disturbance Scale for Children. We estimated the associations using generalized linear mixed models with adjustment for characteristics of children, parents, and indoor environments. Results: Long-term PM2.5 and PM1 exposures were positively associated with odds of sleep disorders for almost all domains. For example, increments in PM2.5 and PM1 per 10 μg/m3 were associated with odds ratios of global sleep disorder of 1.24 (95 % confidence interval [CI]: 1.14, 1.35) and 1.31 (95 %CI: 1.18, 1.46), respectively. Similar results were observed for subtypes of sleep disorder. These associations were heterogeneous regionally, with stronger associations among children residing in southeast region than in northeast and northwest regions. Moreover, larger estimates of PM1 were found than that of PM2.5 in southeast region. Conclusion: Long-term PM2.5 and PM1 exposures are independently associated with higher risks of childhood sleep disorders, and these associations vary by geographical region

    Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction

    Get PDF
    Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness

    Self-Assembly Fabrication of Hollow Mesoporous Silica@Co–Al Layered Double Hydroxide@Graphene and Application in Toxic Effluents Elimination

    Get PDF
    Here, we propose a self-assembly process to prepare hierarchical HM-SiO2@Co–Al LDH@graphene, with the purpose of combining their outstanding performance. Hollow mesoporous silica was first synthesized as the core, using a novel sonochemical method, followed by a controlled shell coating process and chemical reduction. As a result of the electrostatic potential difference among HM-SiO2, Co–Al LDH, and graphene oxide, the HM-SiO2 spheres were coated by Co–Al LDH and graphene. Subsequently, the HM-SiO2@Co–Al LDH@graphene spheres were introduced into an epoxy resin (EP) matrix for investigation of their toxic effluents capture and elimination effectiveness during combustion. The amount of toxic CO and volatile organic compounds from the epoxy resin decomposition significantly suppressed after incorporating the HM-SiO2@Co–Al LDH@graphene hybrids, implying a reduced toxicity
    • …
    corecore