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ABSTRACT: Spectral measurements of complex heterogeneous types of mixture samples are often 18 

affected by significant multiplicative effects resulting from light scattering, due to physical variations 19 

(e.g. particle size and shape, sample packing and sample surface, etc.) inherent within the individual 20 

samples. Therefore, the separation of the spectral contributions due to variations in chemical 21 

compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic 22 

analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the 23 

multiplicative parameters accounting for multiplicative effects in each measured spectrum, and hence 24 

mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of 25 

heterogeneous samples. The basic assumption of the proposed method is that light scattering due to 26 

physical variations has the same effects on the spectral contributions of each of the spectroscopically 27 

active chemical component in the same sample mixture. Based on this underlying assumption, the 28 

proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple 29 

quadratic programming problem. The performance of the proposed method has been tested on two 30 

publicly available benchmark data sets (i.e. near-infrared total diffuse transmittance spectra of 31 

four-component suspension samples and near infrared spectral data of meat samples) and compared 32 

with some empirical approaches designed for the same purpose. It was found that the proposed method 33 

provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture 34 

samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture 35 

samples can be achieved through the combination of spectroscopic techniques with smart modeling 36 

methodology.   37 

 38 

 39 

Keywords: Heterogeneous mixture samples, Multiplicative light scattering effects, Modified optical 40 

path-length estimation and correction, Dual calibration strategy, Spectroscopic quantitative analysis 41 

 42 
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1. Introduction 43 

The quantitative analysis of heterogeneous mixture samples using conventional instruments such as 44 

HPLC generally involves troublesome and time-consuming sample preparations. Due to their high 45 

measuring speed, multiplicity of analysis, non-destructivity, flexibility and especially requirement of 46 

less or even no sample preparations, spectroscopic technologies such as near infrared (NIR), mid 47 

infrared (MIR) and Fourier-transform Raman spectroscopy (FT-Raman) have been increasingly applied 48 

to the analysis of complex systems in areas of chemicals, food processing, agriculture and 49 

pharmaceuticals, etc 
1-6

. However, when analyzing complex heterogeneous mixture samples that exhibit 50 

sample-to-sample variability in physical properties using  spectroscopic instrumentation, the 51 

multiplicative light scattering effects caused by the uncontrolled variations in optical path length due to 52 

the physical differences between samples (e.g. particle size and shape, sample packing, and sample 53 

surface, etc) would  „scale‟ the entire spectral measurement and hence mask the spectral variations 54 

relating to the content differences of chemical compounds in the samples 
7
. The presence of dominant 55 

multiplicative effects in spectral data could invalidate the underlying assumption of commonly used 56 

multivariate linear calibration methods such as PCR 
8
 and PLS 

9
 which postulates a linear relationship 57 

between spectral measurements and the contents of chemical components, and hence significantly 58 

deteriorate the predictive performance of calibration models built by multivariate linear calibration 59 

methods. The separation of the spectral contributions due to variations in chemical compositions from 60 

those caused by multiplicative effects is therefore crucial to the accurate quantitative analysis of messy 61 

spectral data with multiplicative effects. 62 
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A number of chemometric pre-processing methods, e.g., Multiplicative Signal Correction (MSC) 
7
, 63 

Standard Normal Variate (SNV) 
10

, Inverted Signal Correction (ISC) 
11

, Extended Inverted Signal 64 

Correction (EISC) 
12

, Extended MSC (EMSC) 
13

 and Modified EMSC 
14

 have been proposed to remove 65 

the multiplicative effects caused by variations in physical properties of samples. However MSC, ISC 66 

and EISC could only be applied to a spectrum that has wavelength regions containing no chemical 67 

information, i.e. influenced only by the multiplicative effects. Otherwise, they could result in 68 

dramatically poor results. The applicability of EMSC and the modified EMSC is limited due to the 69 

requirement of the pure spectra for all spectroscopically active chemical components present in the 70 

samples which is difficult to satisfy in practice.  71 

Recently, Thennadil et al. proposed an interesting approach for the correction of multiple light 72 

scattering effects by making use of radiative transfer theory 
15-16

. Though this approach can to some 73 

extent improve the predictive performance of multivariate calibration models, its implementation 74 

complexity and the requirement of three measurements for each mixture sample (i.e. total diffuse 75 

transmittance, total diffuse reflectance and collimated transmittance) make it difficult to use in practice. 76 

More recently in a review of pharmaceutical applications of separation of absorption and scattering in 77 

near-infrared spectroscopy, similar concepts to the approach mentioned above are discussed 
17

. Another 78 

similar approach to compensate for the scattering effects in reflectance spectroscopy was developed by 79 

Kessler et al. by integrating Kubelka–Munk equation with multivariate curve resolution (MCR) 
18

. Like 80 

the method based on radiative transfer theory, the application of hard model constrained MCR–ALS 81 

algorithm is dependent on the availability of two measurements for each mixture sample (i.e. the diffuse 82 
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reflectance spectra of a sample with an optically infinite thickness and a sample of finite thickness). 83 

Hence the scope of its applicability is also limited.  84 

To overcome these limitations, one of the present authors developed a novel multiplicative effect 85 

correction approach, Optical Path-Length Estimation and Correction (OPLEC) 
19, 20

. OPLEC adopted 86 

the following two-step procedure for the correction of multiplicative effects in spectral measurements. 87 

First of all, the multiplicative parameters accounting for multiplicative effects in the spectral 88 

measurements of the calibration samples are estimated by a unique method deduced solely from the 89 

linear transformation of the calibration spectral measurements. And then the multiplicative effects in the 90 

spectral measurements of the test samples are efficiently removed by a dual-calibration strategy. 91 

Without placing any requirement on the spectral measurements, OPLEC can efficiently separate the 92 

multiplicative effects of samples‟ physical properties from the spectral variations related to the chemical 93 

compositions, and hence has much wider applicability than other methods reported in the literature. The 94 

development of OPLEC provided an important contribution to the solution of multiplicative light 95 

scattering issues. Whereas the first step of OPLEC, i.e. the estimation of the multiplicative parameters 96 

for the calibration samples, involves the determination of the number of spectroscopically active 97 

chemical components in the systems under study. A poor estimation of the number of chemical 98 

components would result in suboptimal performance of OPLEC. For complex systems, the estimation of 99 

the number of chemical components is not a trivial task. Therefore, the OPLEC method needs to be 100 

refined to realize its full potential for spectroscopic quantitative analysis of heterogeneous mixtures.  101 

The objectives of this study were (1) to redesign the method in OPLEC for the estimation of the 102 

multiplicative parameters for the spectral measurements of the calibration samples, (2) to develop a 103 
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simple but effective approach for determining the optimal model parameter (i.e. the number of 104 

spectroscopically active chemical components) in OPLEC, (3) to improve the robustness of OPLEC 105 

when being applied to complex systems, and finally (4) to evaluate the performance of the modified 106 

OPLEC method on two publicly available benchmark data sets.  107 

 108 

 109 

2. Theory 110 

2.1 The dual calibration strategy adopted by OPLEC to correct multiplicative effects 111 

For spectral measurements with multiplicative effects caused by changes in the optical path-length due 112 

to the physical variations of the samples, the measured spectrum (xi, row vector) of sample i composed 113 

of J chemical components can be approximated by the following model 
6, 7, 21

: 114 

J

j

jjiii Iicp
1

, ,1,2,    , sx  

(

1) 

Where ci, j is the concentration of the j-th chemical component in the i-th mixture sample; sj represents 115 

the pure spectrum of j-th chemical component in the mixtures. The coefficient pi accounts for the 116 

multiplicative effects in the spectral measurements of the i-th sample caused by changes in the optical 117 

path-length due to the physical variations of the sample; I denotes the number of calibration samples. 118 

Assume the first component is the target constituent in the mixtures and
J

j

jjic
1

, 1s  (which strictly 119 

hold for ci,j representing unit-free concentration such as weight fraction and mole fraction), then eq.1 120 

can also be expressed as: 121 
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2

3

,211,    , ssssssx j

J

j

jjjiiiiii cppcp  (2) 

It is obvious that a linear relationship exists between xi and pi, and also between xi and 1,iicp . It should 122 

be noted that this conclusion would also hold when the content of one constituent (or matrix substances) 123 

does not vary over mixture samples. Provided the multiplicative parameter vector p ( ];;;[ 21 Ippp p ) 124 

for the calibration samples is available (actually it can be estimated from the calibration spectra by the 125 

multiplicative parameter estimation method outlined in section 2.2) , two following calibration models 126 

can therefore be built by multivariate linear calibration methods such as PLS. The first model is between 127 

X ( ];;;[ 21 IxxxX  ) and p, and the other is between X and diag(c1)p 128 

( ];;;[)( 1,1,221,111 II cpcpcpdiag pc ). For simplicity, the same number of latent components is 129 

generally used in the above two PLS calibration models. Once the spectrum of a test sample has been 130 

recorded, the content of the target constituent in the test sample can then be obtained by dividing the 131 

prediction of the second calibration model by the corresponding prediction of the first calibration model. 132 

 133 

2.2 Multiplicative parameter estimation 134 

Obviously, the estimation of the multiplicative parameter vector p for the calibration samples is the key 135 

to the correction of the multiplicative effects by the above dual calibration strategy. The performance of 136 

the multiplicative parameter estimation method in the original OPLEC method 
19

 relies on the accurate 137 

estimation of the number of spectroscopically active chemical components in the systems under study. 138 

Poor estimation of the number of chemical components could significantly affect the performance of 139 
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OPLEC. With a view to improve the robustness of OPLEC, the following refined method for the 140 

estimation of multiplicative parameter vector p for the calibration samples was proposed in this work. 141 

Suppose the singular value decomposition of X ( ];;;[ 21 IxxxX  ) can be expressed as follows:  142 

EVUVVUUX
TT],[

0

0
],[ sssns

n

s

ns  

(

3) 

Where, T

nnn VUE ; superscript „T„ denotes the transpose; subscripts „s‟ and „n‟ signify that the 143 

corresponding factors represent spectral information and noise, respectively. Suppose the actual number 144 

of spectroscopically active chemical components in the system studied is r, then both Us and Vs consist 145 

of r columns. According to eq.2, both vectors p and diag(c1)p are in the column space of Us, so the 146 

following equations hold: 147 

ppUU
T

ss
 

(4

)  

pcpcUU )()( 11

T diagdiagss  (5

) 

Since there is no requirement to know the absolute value of pi, pi can be assumed to be no less than 148 

unity ( 1p ). Therefore, the vector p satisfying equations 4 and 5 can be obtained by solving the 149 

following constrained optimization problem: 150 

1  subject to   ,)()(
1

2

1
min

2

2
11

T

2

2

2

T
ppcpcUUppUU

p
diagdiag

w
ssss  

  

(6) 

Where, 
2
denotes l

2
 norm; w  is a weight to balance the two parts in the above optimization function. 151 

It can be simply set to be the maximum element of c1. The above constrained optimization problem can 152 
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be transformed into an equivalent quadratic programming problem (which can be resolved by the 153 

quadprog function in MATLAB. The MATLAB code for the multiplicative parameter estimation 154 

method is available in Supporting Information): 155 

1- such that    ,))/())(/()((
2

1
)(min 1

T

1

TT
ppcUUIcUUIpp

p
wdiagwdiagf ssss  (7) 

 156 

2.3 Determination of the number of columns in Us 157 

Theoretically, the number of columns in Us (i.e. parameter r) should equal to the number of 158 

spectroscopically active chemical components in the systems under study. It is generally difficult to 159 

determine the exact number of spectroscopically active chemical components in a complex system. 160 

Moreover, when the spectral data does not strictly obey the model in eq. 1, the optimal number of 161 

columns in Us might not solely depend on the number of spectroscopically active chemical components 162 

in the system under study, which would further complicate the situation. Fortunately, a simple 163 

mathematical analysis reveals that )(min p
p

f  decreases dramatically with the increase of r at the very 164 

start, and then tends to be steady when r exceeds certain threshold value. Therefore, the optimal value of 165 

r can be determined by locating the turning point in the plot of )(min p
p

f  versus r.  166 

 167 

 168 

3. Case studies 169 

The effectiveness of the modified OPLEC method (hereafter referred to OPLECm) with respect to its 170 

ability to estimate multiplicative parameters was first tested on the near-infrared total diffuse 171 

transmittance spectra of four-component suspension system consisting of water, deuterium, ethanol, and 172 
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polystyrene (hereafter referred to four-component suspension data). To further explore the potential of 173 

OPLECm, another real-world near-infrared transmittance spectra of meat samples recorded on a Tecator 174 

Infratec Food and Feed Analyzer (hereafter referred to tecator data) is employed. This spectral data set 175 

is publicly available and hence ensures that the interested reader can repeat the analysis. 176 

 177 

3.1 Four-component suspension data
16

 178 

The four-component suspension system is composed of three fully miscible absorbing species of water, 179 

deuterium oxide and ethanol and a species that both absorbs and scatters light (i.e., a particulate species 180 

of polystyrene). Specifically, the range of particle size and concentration were chosen to be 100~500 nm 181 

and 1~5 wt%, respectively, such that the following conditions were satisfied: stable suspension, multiple 182 

scattering, and sufficient signals in measurement. A total of 42 samples were prepared using various 183 

combinations of the concentrations of the four components and particle sizes of which the total diffuse 184 

transmittance (Td) spectra were recorded on a scanning spectrophotometer (CARY 5000) fitted with a 185 

diffuse reflectance accessory (DRA-2500). The spectral data were collected in the wavelength region of 186 

1500-1880 nm with an interval of 2nm, resulting in measurements at 191 discrete wavelengths per 187 

spectrum. Twenty-two suspension samples‟ spectra were randomly selected to construct the calibration 188 

data set. The remaining twenty spectra from the other suspension samples made up the test data set. The 189 

absorbing-only species of deuterium oxide with concentration range between 20% and 58 wt% was 190 

taken as the analyte of interest in the present analysis and all the total diffuse transmittance spectra were 191 

transformed into absorbance spectra prior to the analysis. More experimental details can be found in the 192 

original paper of Steponavicius and Thennadil
16

. 193 
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 194 

3.2 Tecator data
22

 195 

This benchmark spectral data set consists of the near-infrared absorbance spectra of 240 meat samples 196 

recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength range 850-1050 nm 197 

with an interval of 2nm by the Near Infrared Transmission principle. Each sample contains finely 198 

chopped pure meat with different moisture, fat and protein contents. A Soxhlet method was used as the 199 

laboratory reference for fat determination. The Soxhlet values ranged from 2% to 59% fat. The 240 200 

spectra were divided into 5 data sets for the purpose of model validation and extrapolation studies 201 

(calibration set: 129; validation set: 43; test set: 43; extrapolation set for fat: 8; extrapolation set for 202 

protein: 7). The task in the present work is restricted to predict the fat content (%) of a meat sample on 203 

the basis of its near infrared absorbance spectrum, the extrapolation set for protein is therefore excluded. 204 

The tecator data is available at http://lib.stat.cmu.edu/datasets/tecator. 205 

 206 

3.3 Data pre-treatment 207 

For the aforementioned two data sets, the possible additive baseline effects and wavelength dependent 208 

spectral variations were firstly removed by projecting the measured spectra onto the orthogonal 209 

complement of the space spanned by the row vectors of ];;[ 2
λλ1M

19
. The pre-processed spectra 210 

were then used to calculate the multiplicative parameter vector p for the calibration samples. The dual 211 

calibration models in OPLECm were built on the pre-processed spectra by using PLS method. The 212 

predictive performance of OPLECm was compared with those of PLS calibration models with and 213 

without the application of data preprocessing methods such as MSC, SNV, EISC and EMSC as long as 214 
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they are applicable. The root-mean-square error of prediction (RMSEP) was used to assess the 215 

performance of the calibration models. 216 

 217 

 218 

4. Results and discussion 219 

4.1 Four-component suspension data 220 

The raw total transmittance spectra of the four-component suspension samples are presented in Figure 1. 221 

It can be observed that the variations in polystyrene particle size and concentration across samples 222 

resulted in significant additive baseline shift as well as multiplicative effects in the spectral data. 223 

Though the additive baseline effects and possible wavelength dependent spectral variations can be 224 

readily removed by orthogonal projection pre-processing, the multiplicative effects as a consequence of 225 

the changes in sample‟s effective optical path-length are rather difficult to correct. Such multiplicative 226 

effects can not be effectively modeled by multivariate linear calibration models either. Without being 227 

properly corrected or modeled, they can significantly deteriorate the predictive performance of 228 

multivariate linear calibration models 
13, 19

.  229 
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 230 
Figure 1: The raw spectra of the four component suspension system. 231 
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As stated in the theory section, OPLECm can effectively correct the multiplicative effects in spectral 232 

measurements. OPLECm consists of two main steps. The first step is to estimate the multiplicative 233 

parameter vector p for the calibration samples from the orthogonal projection pre-processed spectra. 234 

The estimation of the multiplicative parameter vector p for the calibration samples requires the 235 

determination of the actual number of spectral variation sources (r) in the calibration spectra, which can 236 

be achieved by scrutinizing the plot of )(min p
p

f  versus r (Figure 2). From Figure 2, it can be seen that 237 

)(min p
p

f  decreases obviously when the number of columns of Us increases from one to three and 238 

including more components in Us leads to no significant changes in )(min p
p

f , which means the most 239 

spectral information relevant to p and diag(c1)p was included in the first three principal components of 240 

Us. Therefore, the optimal value of r was then set to three.  241 

 242 

 243 
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Figure 2: The relationship between )(min p
p

f and the number of columns of Us (i.e. r) for the four 245 

component suspension data. 246 
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After the estimation of the multiplicative parameter vector p for the calibration samples, one can 247 

assess the applicability of OPLECm to the spectral data set by examining the two plots of p vs pUU
T

ss
 248 

and pc )( 1diag  vs pcUU )( 1diagT

ss
, respectively (supporting information, Figure S-1). As shown in 249 

Figure S-1, both p and pc )( 1diag are in good agreement with pUU
T

ss
 and pcUU )( 1diagT

ss
 , 250 

respectively, which confirms that a linear relationship exists between xi and pi, and also between xi and 251 

1,iicp . The dual calibration strategy of OPLECm is therefore applicable to the four component 252 

suspension data. Figure S-1 also reveals the presence of significant variations of multiplicative effects 253 

(pi varying from 1 to 3.09) in the calibration samples. Multiplicative effect correction methods such as 254 

OPLECm are therefore needed to remove such significant multiplicative effects in the spectral 255 

measurements. 256 

Figure 3a compared the predictive performance of the optimal OPLECm calibration model for 257 

deuterium oxide and the corresponding optimal PLS models with and without the application of 258 

preprocessing methods (e.g. SNV, MSC, EISC and EMSC). Obviously, as a result of the presence of 259 

severe multiplicative effects, PLS calibration model built on the raw calibration spectra could not give 260 

satisfactory predictions for the deuterium oxide in the test suspension samples. Preprocessing the 261 

calibration spectra by MSC, SNV or EISC can, to some extent, improve the predictive performance of 262 

PLS calibration models in terms of RMSEP values. However, due to the lack of a wavelength region 263 

containing no chemical information in the spectral data, the multiplicative effects can not be fully 264 

corrected by MSC, SNV or EISC. Hence, the predictive errors of the PLS calibration models built on 265 

the calibration spectra pre-processed by MSC, SNV and EISC are still comparatively high. As expected, 266 

OPLECm offers the best improvement in terms of the predictive ability among all the pre-processed 267 
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methods. The OPLECm calibration model with five underlying components provided the best predictive 268 

results with a RMSEPtest value as low as 0.005, while the corresponding best RMSEPtest value of the 269 

PLS calibration model with nine underlying components on the calibration spectra pre-processed by 270 

EISC is 0.009. Furthermore, the performance of the OPLECm is robust to the number of columns in Us 271 

(Figure 3b). Considering the fact that OPLECm does not place any extra requirement on the spectral 272 

measurements as other multiplicative effect correction methods do, such a result is quite encouraging. 273 

 274 
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Figure 3: a) The predictive performance of OPLECm and the PLS models built on the calibration spectra 277 

of the four component suspension system preprocessed by different methods (black circle: the raw 278 

spectra; red star: MSC; green triangle down: SNV; pink diamond: EISC; blue square: OPLECm); b) The 279 

predictive performance of the optimal OPLECm models when Us with different number of columns (r) 280 

were used in the calculation of the multiplicative parameter vector p for the calibration spectra. 281 
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4.2 Tecator data 282 

As in four component suspension data, there are significant additive baseline effects in the tecator data 283 

(supporting information, Figure S-2). Since the changes in physical properties of samples generally 284 

result in both additive baseline effects and multiplicative effects, the presence of significant additive 285 

baseline effects strongly suggests the existence of multiplicative effects. OPLECm was therefore used to 286 

estimate the multiplicative parameter vector p for the calibration samples from the corresponding 287 

orthogonal projection pre-processed calibration spectra as described in section 3.3. During the 288 

estimation of the multiplicative parameter vector p for the calibration samples using OPLECm, the 289 

optimal number of columns included in Us (i.e. r) is determined by scrutinizing the plot of )(min p
p

f  290 

versus r (Figure 4). It can be seen that )(min p
p

f  drops sharply as the r increases from one to six, and 291 

then decreases slowly along with the further increase of r (Figure 4). One can therefore choose six as the 292 

optimal number of columns of Us. 293 
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Figure 4: The plot of  )(min p
p

f  versus the number of columns in Us (i.e. r). 295 
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It is worth to point out again that the performance of OPLECm is quite robust to the choice of r as long 296 

as r is big enough but not too large. As shown in Figure 5, The RMSEP value of OPLECm for the test 297 

samples shows no significant difference when r taking a value between 6 and 11. In practice, such a 298 

feature of OPLECm can make it more user-friendly when being applied to complex systems.  299 
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Figure 5: The RMSEP values for the test samples in the tecator data obtained by the optimal OPLECm 301 

calibration models when Us with different number of columns (i.e. r) were used in the calculation of the 302 

multiplicative parameter vector p for the calibration spectra. 303 

 304 
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After the estimation of the multiplicative parameter vector p for the calibration samples, the dual 305 

calibration strategy of OPLECm was adopted to mitigate the detrimental of multiplicative effects on the 306 

prediction of the fat content. PLS calibration models with and without the application of MSC, SNV and 307 

EISC were also established for comparison purposes. The optimal number of underlying components 308 

used in the dual calibration models of OPLEC as well as those PLS calibration models was chosen to be 309 

the one with minimal root-mean-square error of prediction (RMSEP) for the validation set. The results 310 

of OPLECm along with those of the four optimal PLS calibration models with and without the 311 

application of MSC, SNV and EISC were shown in Figure 6.  312 
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Figure 6: The RMSEP values for the tecator data obtained by different calibration methods. 314 
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Figure 6 reveals that although the number of latent components (i.e. fourteen) used is sufficiently 315 

large, the optimal PLS calibration model on the raw calibration spectra did not give satisfactory 316 

predictions for all the four data sets. The RMSEP values for the calibration, validation, test and 317 

extrapolation sets are 1.7%, 2.7%, 2.3% and 8.5%, respectively. The application of the empirical 318 

multiplicative light scattering correction method, SNV saw no significant changes in the RMSEP values 319 

for the four data sets. While preprocessing the spectral data by MSC resulted in a dramatic increase in 320 

the RMSEP value for the extrapolation set which clearly demonstrates its limitation in practical 321 

applications. The EISC preprocessing method surprisingly succeeded in improving the quality of the 322 

predictions of PLS calibration model for the tecator data. Its RMSEP values for the calibration, 323 

validation, test and extrapolation sets are 0.7%, 0.9%, 1.0% and 3.3%, respectively. The reasons of its 324 

success in this particular data set are unclear. As expected, OPLECm outperformed all the other methods 325 

with RMSEP values for the calibration, validation, test and extrapolation sets equaling to 0.4%, 0.5%, 326 

0.4% and 1.0%, respectively, This remarkable improvement further confirmed the effectiveness of 327 

OPLECm in mitigating the detrimental influence of multiplicative effects on the spectroscopic 328 

quantitative analysis of heterogeneous mixture samples. 329 

 330 

 331 

5. Conclusion 332 

The separation of the spectral contributions due to variations in chemical compositions from 333 

multiplicative effects caused by physical variations is crucial to the accurate quantitative analysis of 334 

complex heterogeneous mixture samples using spectroscopic instruments. In this work, a modified 335 
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version of Optical Path-Length Correction and Estimation (OPLECm) method has been developed to 336 

correct the multiplicative effects in spectral measurements. OPLECm differs from the original OPLEC 337 

method in the way of estimating the multiplicative parameters for the calibration samples. In OPLECm, 338 

the multiplicative parameters for the calibration samples were obtained by solving a constrained 339 

quadratic programming problem, which is much more efficient than the counterpart in the original 340 

OPLEC. Furthermore, a simple but effective method has been proposed for the determination of the 341 

model parameter involved (i.e. the number of spectroscopically active chemical components in the 342 

system under study). Due to the unique multiplicative parameter estimation strategy, the performance of 343 

OPLECm is much more robust to the choice of the model parameter involved, which makes OPLECm 344 

more user-friendly when being applied to complex systems. The performance of OPLECm has been 345 

tested on four-component suspension spectral data set and one publicly available benchmark spectral 346 

data set. Experimental results reveal that OPLECm can achieve satisfactory quantitative results from the 347 

spectroscopic measurements of heterogeneous mixtures. Compared with other existing methods 348 

designed for the same purpose, OPLECm has features of implementation simplicity, wider applicability 349 

as well as better performance in terms of quantitative accuracy, and therefore has great potential in 350 

quantitative spectroscopic analysis of complex heterogeneous systems. 351 

 352 
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The MATLAB code for the modified OPLEC method 22 

%  [p, fval] = OPLECm(X, c, CompNumb); 23 

%  This is an m-file for the estimation of the multiplicative effect vector p for calibration samples; 24 

%  X contains 
ix  in its rows; 

ix  ( Ii ,,2,1  ) are the spectra of I calibration samples. 25 

%  c is the concentration vector of the target chemical component in the calibration samples; 26 

%  CompNumb is the number of spectroscopically active chemical components in mixture samples; 27 

%  p is a vector containing the multiplicative scattering parameters for the calibration samples; 28 

%  fval is the value of objective function at p; 29 

 30 

function [p, fval]=OPLECm(X, c, CompNumb); 31 

[U,S,V]=svd(X); 32 

Us= U(:,1:CompNumb); 33 

n=length(c); 34 

w=max(c); 35 

H1=eye(n, n)- Us* Us'; 36 

H2= diag(c./w)*H1* diag(c./w); 37 



 

 S3 

H=H1+H2;  % matrix H in min(0.5*p'*H*p+f'*p); 38 

f=zeros(n,1);  % vector f in min(0.5*p'*H*p+f'*p); 39 

A=-eye(n,n);  % matrix A in A*p<=b; 40 

b=-ones(n,1);  % vector b in A*p<=b;  41 

StartingVect=ones(n,1); 42 

options=optimset('quadprog'); 43 

options=optimset(options,'LargeScale','off','Display','off'); 44 

[p,fval]=quadprog(H,f,A,b,[],[],[],[],StartingVect,options); 45 

% After obtaining the model parameter vector p for calibration samples, two calibration models are built 46 

using the standard PLS toolbox. One is between the concentration vector ( c ) of the target chemical 47 

component and the spectral data X; the other is between pc)(diag  and X. The multiplicative effect on 48 

the test sample can then be corrected through dividing the prediction of the second calibration model by 49 

the prediction of the first calibration model. 50 
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1) Figure S-1: The plots of p vs pUU
T

ss
 (a) and pc )( 1diag  vs pcUU )( 1diagT

ss
 (b) for the four 51 

component suspension data. The number of columns in Us is three. 52 
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2) Figure S-2: The 129 raw calibration spectra of the tecator data. 55 
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