1,571 research outputs found

    Toxoplasma gondii infection in farmed wild boars (Sus scrofa) in three cities of northeast China

    Get PDF
    The apicomplexan protozoan parasite Toxoplasma gondii is a widely distributed etiological agent of foodborne illness. This parasite can cause production losses in livestock and serious disease in humans through consumption of contaminated meat. Pig meat is the most likely source of human infection, and wild boars may play a role in the transmission of T. gondii by serving as a reservoir host. This study aimed to investigate the seroprevalence of antibodies to T. gondii among farmed wild boars in China. In an 11-month survey, a total of 882 serum samples were obtained from farmed wild boars from three cities (Jilin City, Siping City, and Baishan City) in Jilin province, Northeast China and were tested for antibodies specific for T. gondii. Using modified agglutination test and a cutoff titer of 1:25, the prevalence of T. gondii infection in the examined samples was 10.0% (88 of 882). The highest seroprevalence was observed in animals from Jilin city (15.3%, 43/281) and followed by Siping (11.4%, 30/263) and Baishan (4.4%, 15/338). Logistic regression analysis revealed a significant correlation between the investigated geographic region and T. gondii infection. In addition, prevalence was higher in females compared to males, and the highest prevalence was detected in piglets. These findings indicate that farmed wild boars may become a source of foodborne toxoplasmosis, posing a food safety threat to the public health in the investigated areas. Implementation of effective measures to control T. gondii infection in farmed wild boars in China may be warranted

    Prevalence, risk factors and genotype distribution of Toxoplasma gondii DNA in soil in China

    Get PDF
    Copyright © 2019 Elsevier Inc. All rights reserved. In the present study, we performed a cross-sectional survey to determine the occurrence and genotype distribution of T. gondii DNA in soil samples collected from different sources from six geographic regions in China. Between March 2015 and June 2017, 2100 soil samples were collected from schools, parks, farms and coastal beaches, and examined for T. gondii DNA using three PCR assays targeting 529-bp repeat element (RE) sequence, B1 gene and ITS-1 gene sequences. Also, we investigated whether geographic region, soil source and type, and sampling season can influence the prevalence of T. gondii DNA in the soil. Soil samples collected from farms and parks had the highest prevalence, whereas samples collected from school playgrounds and coastal beaches had the lowest prevalence. PCR assays targeting 529-bp RE and ITS-1 gene sequences were more sensitive than the B1 gene-based assay. Positive PCR products were genotyped using multi-locus PCR-RFLP, and ToxoDB #9 was the predominant genotype found in the contaminated soil samples. Multiple logistic regression identified factors correlated significantly with the presence of T. gondii DNA in the soil to be the source of the soil, including farms (odds ratio 3.10; 95% confidence interval [CI], 1.52 to 6.29; p=0.002) and parks (2.59; 95% CI 1.28 to 5.27; p=0.009). These results show that Chinese soil hosts T. gondii of the most prevalent genotype in China (ToxoDB#9) and that the soil type influences infection patterns

    MicroRNA: role in macrophage polarization and the pathogenesis of the liver fibrosis

    Get PDF
    Macrophages, as central components of innate immunity, feature significant heterogeneity. Numerus studies have revealed the pivotal roles of macrophages in the pathogenesis of liver fibrosis induced by various factors. Hepatic macrophages function to trigger inflammation in response to injury. They induce liver fibrosis by activating hepatic stellate cells (HSCs), and then inflammation and fibrosis are alleviated by the degradation of the extracellular matrix and release of anti-inflammatory cytokines. MicroRNAs (miRNAs), a class of small non-coding endogenous RNA molecules that regulate gene expression through translation repression or mRNA degradation, have distinct roles in modulating macrophage activation, polarization, tissue infiltration, and inflammation regression. Considering the complex etiology and pathogenesis of liver diseases, the role and mechanism of miRNAs and macrophages in liver fibrosis need to be further clarified. We first summarized the origin, phenotypes and functions of hepatic macrophages, then clarified the role of miRNAs in the polarization of macrophages. Finally, we comprehensively discussed the role of miRNAs and macrophages in the pathogenesis of liver fibrotic disease. Understanding the mechanism of hepatic macrophage heterogeneity in various types of liver fibrosis and the role of miRNAs on macrophage polarization provides a useful reference for further research on miRNA-mediated macrophage polarization in liver fibrosis, and also contributes to the development of new therapies targeting miRNA and macrophage subsets for liver fibrosis

    Quantitative association of cerebral blood flow, relaxation times and proton density in young and middle-aged primary insomnia patients: A prospective study using three-dimensional arterial spin labeling and synthetic magnetic resonance imaging

    Get PDF
    ObjectivesTo quantitatively measure the T1 value, T2 value, proton density (PD) value, and cerebral blood flow (CBF) in young and middle-aged primary insomnia (PI) patients, and analyze the correlations between relaxation times, PD, and CBF to explore potential brain changes.MethodsCranial magnetic resonance (MR) images of 44 PI patients and 30 healthy subjects were prospectively collected for analysis. The T1, T2, PD, and CBF values of the frontal lobe, parietal lobe, temporal lobe, and occipital lobe were independently measured using three-dimensional arterial spin labeling (3D-ASL), synthetic magnetic resonance imaging (syMRI) and a whole-brain automatic segmentation method. The differences of these imaging indices were compared between PI patients and healthy subjects. Follow-up MR images were obtained from PI patients after 6 months to compare with pre-treatment images. The Wilcoxon signed rank test and Spearman rank were used for statistical analysis.ResultsBilateral CBF asymmetry was observed in 38 patients, with significant differences in both the T2 value and CBF between the four lobes of the brain (p < 0.01). However, no significant difference was found in the T1 and PD values between the bilateral lobes. A negative correlation was found between CBF and T2 values in the right four lobes of patients with primary insomnia (PI). During follow-up examinations, five PI patients showed a disappearance of insomnia symptoms and a decrease in CBF in both brain lobes.ConclusionInsomnia symptoms may be associated with high CBF, and most PI patients have higher CBF and lower T2 values in the right cerebral hemispheres. The right hemisphere appears to play a critical role in the pathophysiology of PI. The 3D-ASL and syMRI technologies can provide a quantitative imaging basis for investigating the brain conditions and changes in young and middle-aged PI patients

    Toxocara canis Infection Alters lncRNA and mRNA Expression Profiles of Dog Bone Marrow

    Get PDF
    Bone marrow is the main hematopoietic organ that produces red blood cells, granulocytes, monocyte/macrophages, megakaryocytes, lymphocytes, and myeloid dendritic cells. Many of these cells play roles in the pathogenesis of Toxocara canis infection, and understanding how infection alters the dynamics of transcription regulation in bone marrow is therefore critical for deciphering the global changes in the dog transcriptional signatures during T. canis infection. In this study, long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in the bone marrow of Beagle dogs infected with T. canis were determined at 12 h post-infection (hpi), 24 hpi, 96 hpi, and 36 days post-infection (dpi). RNA-sequencing and bioinformatics analysis identified 1,098, 984, 1,120, and 1,305 differentially expressed lncRNAs (DElncRNAs), and 196, 253, 223, and 328 differentially expressed mRNAs (DEmRNAs) at 12 h, 24 h, 96 h, and 36 days after infection, respectively. We also identified 29, 36, 38, and 68 DEmRNAs potentially cis-regulated by 44, 44, 51, and 80 DElncRNAs at 12 hpi, 24 hpi, 96 hpi, and 36 dpi, respectively. To validate the sequencing findings, qRT-PCR was performed on 10 randomly selected transcripts. Many altered genes were involved in the differentiation of bone marrow cells. GO of DElncRNAs and GO and KEGG pathway analyses of DEmRNAs revealed alterations in several signaling pathways, including pathways involved in energy metabolism, amino acid biosynthesis and metabolism, Wnt signaling pathway, Huntington's disease, HIF-1 signaling pathway, cGMP–PKG signaling pathway, dilated cardiomyopathy, and adrenergic signaling in cardiomyocytes. These findings revealed that bone marrow of T. canis-infected dogs exhibits distinct lncRNA and mRNA expression patterns compared to healthy control dogs. Our data provide novel insights into T. canis interaction with the definitive host and shed light on the significance of the non-coding portion of the dog genome in the pathogenesis of toxocariasis

    Toxocara canis Differentially Affects Hepatic MicroRNA Expression in Beagle Dogs at Different Stages of Infection

    Get PDF
    Toxocara canis is a neglected zoonotic parasite, which threatens the health of dogs and humans worldwide. The molecular mechanisms that underlie the progression of T. canis infection remain mostly unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been identified in T. canis; however, the regulation and role of miRNAs in the host during infection remain incompletely understood. In this study, we determined hepatic miRNA expression at different stages of T. canis infection in beagle dogs. Individual dogs were infected by 300 embryonated T. canis eggs, and their livers were collected at 12 hpi (hours post-infection), 24 hpi, and 36 dpi (days post-infection). The expression profiles of liver miRNAs were determined using RNA-sequencing. Compared to the control groups, 9, 16, and 34 differentially expressed miRNAs (DEmiRNAs) were detected in the livers of infected dogs at the three infection stages, respectively. Among those DEmiRNAs, the novel-294 and cfa-miR-885 were predicted to regulate inflammation-related genes at the initial stage of infection (12 hpi). The cfa-miR-1839 was predicted to regulate the target gene TRIM71, which may influence the development of T. canis larvae at 24 hpi. Moreover, cfa-miR-370 and cfa-miR-133c were associated with immune response at the final stage of infection (36 dpi). Some immunity-related Gene Ontology terms were enriched particularly at 24 hpi. Likewise, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that many significantly enriched pathways were involved in inflammation and immune responses. The expression level of nine DEmiRNAs was validated using quantitative real-time PCR (qRT-PCR). These results show that miRNAs play critical roles in the pathogenesis of T. canis during the hepatic phase of parasite development. Our data provide fundamental information for further investigation of the roles of miRNAs in the innate/adaptive immune response of dogs infected by T. canis

    Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis

    Get PDF
    BackgroundToxocara canis, a globally distributed roundworm, can cause debilitating disease in dogs and humans; however, little is known about the metabolomic response of the hosts to T. canis infection. There is an increasing need to understand the metabolic mechanisms underlying the pathogenesis of T. canis infection in dogs. Here, we examined the metabolomic changes in Beagle dogsʼ serum following T. canis infection using LC-MS/MS.ResultsThe metabolic profiles of Beagle dogsʼ serum were determined at 12 h, 24 h, 10 d and 36 d after oral infection with 300 infectious T. canis eggs by LC-MS/MS. We tested whether the T. canis-associated differentially abundant metabolites could distinguish the serum of infected dogs from controls, as measured by the area under the receiver operating characteristic (ROC) curve (AUC). The differentially expressed metabolites were further evaluated by principal components analysis and pathway enrichment analysis. A total of 5756 and 5299 ions were detected in ESI+ and ESI− mode, respectively. ROC curve analysis revealed nine and five metabolite markers, at 12 hpi and 24 hpi to 36 dpi, respectively, with potential diagnostic value for toxocariasis. The levels of taurocholate, estradiol, prostaglandins and leukotriene were significantly changed. Primary bile acid biosynthesis pathway, steroid hormone biosynthesis pathway and biosynthesis of unsaturated fatty acids pathway were significantly altered by T. canis infection.ConclusionsThese findings show that T. canis infection can induce several changes in the dog serum metabolome and that the metabolic signature associated with T. canis infection in dogs has potential for toxocariasis diagnosis

    Lipidomic changes in the liver of beagle dogs associated with Toxocara canis infection

    Get PDF
    A global lipidomic analysis using liquid chromatography-tandem mass spectrometry was performed on the liver of beagle dogs infected with Toxocara canis to profile hepatic lipid species at 12 h post-infection (hpi), 24 hpi, and 36 days post-infection (dpi). This analysis identified six categories and 42 subclasses of lipids, including 173, 64, and 116 differentially abundant lipid species at 12 hpi, 24 hpi, and 36 dpi, respectively. Many of the identified lysophospholipids, such as lysophosphatidylglycerol, lysophosphatidylserine, and lysophosphatidylcholine, may contribute to the migration and development of T. canis during the early infection stage. Pathway analysis revealed significant alterations of several immune-inflammatory pathways, such as the B-cell receptor signaling pathway, the NF-kappa B signaling pathway, and the C-type lectin receptor signaling pathway at 12 and 24 hpi. These findings demonstrate the value of lipidomic profiling in revealing the extent of changes in the composition and abundance of hepatic lipidome caused by T. canis infection and their relevance to the pathophysiology of toxocariasis in beagle dogs

    Global profiling of lncRNAs-miRNAs-mRNAs reveals differential expression of coding genes and non-coding RNAs in the lung of beagle dogs at different stages of Toxocara canis infection

    Get PDF
    The roundworm Toxocara canis causes toxocariasis in dogs and larval migrans in humans. Better understanding of the lung response to T. canis infection could explain why T. canis must migrate to and undergoes part of its development inside the lung of the definitive host. In this study, we profiled the expression patterns of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in the lungs of Beagle dogs infected by T. canis, using high throughput RNA sequencing. At 24 h p.i., 1,012 lncRNAs, 393 mRNAs and 10 miRNAs were differentially expressed (DE). We also identified 883 DElncRNAs, 264 DEmRNAs and 20 DEmiRNAs at 96 h p.i., and 996 DElncRNAs, 342 DEmRNAs and eight DEmiRNAs at 36 days p.i., between infected and control dogs. Significant changes in the levels of expression of transcripts related to immune response and inflammation were associated with the antiparasitic response of the lung to T. canis. The remarkable increase in the expression of scgb1a1 at all time points after infection suggests the need for consistent moderation of the excessive inflammatory response. Also, upregulation of foxj1 at 24 h p.i., and downregulation of IL-1β and IL-21 at 96 h p.i., suggest an attenuation of the humoral immunity of infected dogs. These results indicate that T. canis pathogenesis in the lung is mediated through contributions from both pro-inflammatory and anti-inflammatory mechanisms. Competing endogenous RNA (ceRNA) network analysis revealed significant interactions between DElncRNAs, DEmiRNAs and DEmRNAs, and improved our understanding of the ceRNA regulatory mechanisms in the context of T. canis infection. These data provide comprehensive understanding of the regulatory networks that govern the lung response to T. canis infection and reveal new mechanistic insights into the interaction between the host and parasite during the course of T. canis infection in the canine

    Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle

    Get PDF
    Background: Long non-coding RNAs (lncRNAs) are important regulators of various biological and pathological processes, in particular the inflammatory response by modulating the transcriptional control of inflammatory genes. However, the role of lncRNAs in regulating the immune and inflammatory responses during infection with the protozoan parasite Toxoplasma gondii remains largely unknown. Methods: We performed a longitudinal RNA sequencing analysis of human foreskin fibroblast (HFF) cells infected by T. gondii to identify differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs), and dysregulated pathways over the course of T. gondii lytic cycle. The transcriptome data were validated by qRT-PCR. Results: RNA sequencing revealed significant transcriptional changes in the infected HFFs. A total of 697, 1234, 1499, 873, 1466, 561, 676 and 716 differentially expressed lncRNAs (DElncRNAs), and 636, 1266, 1843, 2303, 3022, 1757, 3088 and 2531 differentially expressed mRNAs (DEmRNAs) were identified at 1.5, 3, 6, 9, 12, 24, 36 and 48h post-infection, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DElncRNAs and DEmRNAs revealed that T. gondii infection altered the expression of genes involved in the regulation of host immune response (e.g., cytokine–cytokine receptor interaction), receptor signaling (e.g., NOD-like receptor signaling pathway), disease (e.g., Alzheimer's disease), and metabolism (e.g., fatty acid degradation). Conclusions: These results provide novel information for further research on the role of lncRNAs in immune regulation of T. gondii infection. Graphical Abstract: [Figure not available: see fulltext.
    • …
    corecore