824 research outputs found

    On the Decelerating Shock Instability of Plane-Parallel Slab with Finite Thickness

    Get PDF
    Dynamical stability of the shock compressed layer with finite thickness is investigated. It is characterized by self-gravity, structure, and shock condition at the surfaces of the compressed layer. At one side of the shocked layer, its surface condition is determined via the ram pressure, while at the other side the thermal pressure supports its structure. When the ram pressure dominates the thermal pressure, we expect deceleration of the shocked layer. Especially, in this paper, we examine how the stratification of the decelerating layer has an effect on its dynamical stability. Performing the linear perturbation analysis, a {\it more general} dispersion relation than the previous one obtained by one of the authors is derived. It gives us an interesting information about the stability of the decelerating layer. Importantly, the DSI (Decelerating Shock Instability) and the gravitational instability are always incompatible. We also consider the evolution effect of the shocked layer. In the early stages of its evolution, only DSI occurs. On the contrary, in the late stages, it is possible for the shocked layer to be unstable for the DSI (in smaller scale) and the gravitational instability (in larger scale). Furthermore, we find there is a stable range of wavenumbers against both the DSI and the gravitational instability between respective unstable wavenumber ranges. These stable modes suggest the ineffectiveness of DSI for the fragmentation of the decelerating slab.Comment: 17 pages, 6 figures. The Astrophysical Journal Vol.532 in pres

    Productivity and quality of 'Fuji Suprema' apple fruit in different rootstocks and growing conditions.

    Get PDF
    Planting density increasing with the use of dwarf rootstocks it is a fact that has changed the scenario of the pome culture in Brazil. The objective of this work was to evaluate the plant growth, productivity and fruit quality of the Fuji Suprema cultivar grafted on the rootstocks G.213 and M.9 in a new area (virgin soil) and in the replanting area of apple trees in Vacaria City in Rio Grande do Sul state, Brazil. The cultivar Fuji Suprema grafted on the rootstocks G.213 and M.9 was used, being the experiment 1 in new area and the experiment 2 in area of replanting of apple trees. In both experiments, the orchard was implanted in 2014. The spacing adopted was 4.0 m between rows and 0.9 m between plants, totaling a density of 2,777 plants per hectare. Vegetative/productive evaluations were carried out in the 2014, 2015, 2016, 2017, 2018 and 2019 harvests in commercial orchards of the company Rasip Agro Pastoril S/A. In the experiment 1, the G.213 rootstock was highlighted for the variables accumulated productivity, accumulated productive efficiency, ASTT, number of branches and scion volume. In this same experiment, the M.9 rootstock was overestimated in some crops for the variables fruit mass and pulp firmness. In the experiment 2, the G.213 rootstock was highlighted as to the accumulated productivity, accumulated productive efficiency, ASTT, number of branches and scion volume. In the 2016 crop, the rootstock M.9, stood out for the diameter and mass of fruits and soluble solids and in the 2017 harvest for pulp firmness. In order to cultivate Fuji Suprema, both in the new area and in the replanting area of apple trees, the G.213 rootstock is a new dwarf rootstock option for the southern region of Brazil

    Riparian zones increase regional species richness by harboring different, not more, species

    Get PDF
    Riparian zones are habitats of critical conservation concern worldwide, as they are known to filter agricultural contaminants, buffer landscapes against erosion, and provide habitat for high numbers of species. Here we test the generality of the notion that riparian habitats harbor more species than adjacent upland habitats. Using previously published data collected from seven continents and including taxa ranging from Antarctic soil invertebrates to tropical rain forest lianas and primates, we show that riparian habitats do not harbor higher numbers of species, but rather support significantly different species pools altogether. In this way, riparian habitats increase regional (Îł-) richness across the globe by >50%, on average. Thus conservation planners can easily increase the number of species protected in a regional portfolio by simply including a river within terrestrial biodiversity reserves. Our analysis also suggests numerous possible improvements for future studies of species richness gradients across riparian and upland habitats. First, <15% of the studies in our analysis included estimates of more than one taxonomic group of interest. Second, within a given taxonomic group, studies employed variable methodologies and sampling areas in pursuit of richness and turnover estimates. Future analyses of species richness patterns in watersheds should aim to include a more comprehensive suite of taxonomic groups and should measure richness at multiple spatial scales

    Possible pseudogap behavior of electron doped high-temperature superconductors

    Full text link
    We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneling spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.Comment: 4 pages, 4 ps-figures included, to be published in Phys. Rev. B, Rapid Com

    Investigating the Contribution of Mature Collagen Crosslinks to Cooked Meat Toughness Using a Stewed Beef Shank Model

    Get PDF
    Objective: The objective of this study was to investigate mature collagen crosslink densities and their relationship to connective tissue texture using a stewed beef shank model. Study Description: Connective tissue texture, Warner-Bratzler shear force, and collagen content and characteristics were measured for six different beef shank cuts from eight U.S. Department of Agriculture Low Choice beef carcasses (n = 48). Results: Deep digital flexor from the foreshank had the toughest connective tissue texture, greatest Warner-Bratzler shear force value, most cooked collagen content, one of the greatest insoluble collagen percentages, as well as greatest raw and cooked pyridinoline densities among all the beef shank cuts (P \u3c 0.05). Correlation analysis showed that cooked collagen content, percent insoluble collagen, as well as raw pyridinoline densities had positive correlations with connective tissue texture (r = 0.550, 0.498, and 0.560, respectively; P \u3c 0.01) and Warner-Bratzler shear force (r = 0.615, 0.392 and 0.730, respectively; P \u3c 0.05). The Bottom Line: Pyridinoline is a heat stable collagen crosslink that is difficult to degrade even with extensive heat treatment. As a result, raw pyridinoline density is a good indicator for heat insoluble collagen content, cooked beef connective tissue texture, and ultimately, tenderness in beef cuts with high concentration of connective tissue prepared with moist heat cookery

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Kinetic alteration of the 6Mg(NH2)2-9LiH-LiBH4 system by co-adding YCl3 and Li3N

    Get PDF
    The 6Mg(NH2)2-9LiH-LiBH4 composite system has a maximum reversible hydrogen content of 4.2 wt% and a predicted dehydrogenation temperature of about 64 °C at 1 bar of H2. However, the existence of severe kinetic barriers precludes the occurrence of de/re-hydrogenation processes at such a low temperature (H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu and P. Chen, J. Mater. Chem. A, 2014, 2, 15816-15822). In this work, Li3N and YCl3 have been chosen as co-additives for this system. These additives increase the hydrogen storage capacity and hasten the de/re-hydrogenation kinetics: a hydrogen uptake of 4.2 wt% of H2 was achieved in only 8 min under isothermal conditions at 180 °C and 85 bar of H2 pressure. The re-hydrogenation temperature, necessary for a complete absorption process, can be lowered below 90 °C by increasing the H2 pressure above 185 bar. Moreover, the results indicate that the hydrogenation capacity and absorption kinetics can be maintained roughly constant over several cycles. Low operating temperatures, together with fast absorption kinetics and good reversibility, make this system a promising on-board hydrogen storage material. The reasons for the improved de/re-hydrogenation properties are thoroughly investigated and discussed

    Atomic scale structure and its impact on the band gap energy for Cu2Zn Sn,Ge Se4 kesterite alloys

    Get PDF
    Kesterite based materials gain more and more relevance in the pursuit of affordable, efficient and flexible absorber materials for thin film photovoltaics. Alloying Cu(2)ZnSnSe(4)with Ge could allow controlled band gap engineering as already established for Cu(In,Ga)(S,Se)(2)based solar cells. This study investigates the local atomic arrangements of Cu2Zn(Sn,Ge)Se(4)alloys by means of low temperature Extended x-ray Absorbtion Fine Structure Spectroscopy. The element specific bond lengths are used together with x-ray diffraction data to derive the anion positions of the different local configurations.Ab initiotheoretical calculations are performed to predict the influence of structural parameters such as anion position and lattice constants on the band gap energy. Combining the results of the experimental and theoretical studies suggests that the overall influence of the structural changes on the band gap bowing due to alloying is significant yet smaller than the total non-linear change of the band gap energy. Consequently, it is concluded, that band gap bowing stems from both structural and electronic changes

    A Preliminary Investigation of the Contribution of Different Tenderness Factors to Beef Loin, Tri-tip, and Heel Tenderness

    Get PDF
    Objective: The objective is to better understand the contribution of each tenderness factor to the perception of tenderness of three specific beef muscles with similar tenderness ratings. Study Description: Longissimus lumborum (loin), tensor fascia latae (tri-tip), and gastrocnemius (heel) were collected from 10 U.S. Department of Agriculture low Choice beef carcasses and assigned to a 5- or 21-day aging period (n = 60). Steaks from each aging period from each subprimal were assigned to one of three assays: 1) trained sensory analysis; 2) objective tenderness evaluation (Warner-Bratzler shear force); or 3) physiochemical analysis (sarcomere length, proteolysis, intramuscular fat content, collagen crosslink, and content). Results: Sarcomere length, troponin-T degradation, collagen content, mature collagen crosslink density, intramuscular lipid content, and trained panel analysis were measured. Correlation analysis indicated each muscle has a specific tenderness factor that contributed to the overall tenderness evaluated by trained panelists. The equations indicated Longissimus lumborum tenderness was driven by lipid content (P \u3c 0.05) and that Tensor fascia latae tenderness was driven by collagen content (P \u3c 0.05). Gastrocnemius tenderness was driven by proteolysis (P \u3c 0.01), and only collagen content can be casually used as an overall tenderness predictor for all three cuts. The Bottom Line: Each muscle showed a unique tenderness factor profile. Loin is inherently tender, and tri-tip has the makings for a tender cut as seen by our biochemical analysis, yet panelists rated tri-tip to have similar overall tenderness as heel, an inherently tough muscle
    • …
    corecore