102 research outputs found

    A photon-photon quantum gate based on a single atom in an optical resonator

    Full text link
    Two photons in free space pass each other undisturbed. This is ideal for the faithful transmission of information, but prohibits an interaction between the photons as required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realise a deterministic photon-photon gate. This requires an interaction so strong that the two photons can shift each others phase by pi. For polarisation qubits, this amounts to the conditional flipping of one photon's polarisation to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors could be realised, as "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift..." [Science 318, 1567]. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications like single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ultimate information carriers, optical qubits. Here we employ the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realise the Duan-Kimble protocol of a universal controlled phase flip (CPF, pi phase shift) photon-photon quantum gate. We achieve an average gate fidelity of F=(76.2+/-3.6)% and specifically demonstrate the capability of conditional polarisation flipping as well as entanglement generation between independent input photons. Our gate could readily perform most of the hitherto existing two-photon operations. It also discloses avenues towards new quantum information processing applications where photons are essential.Comment: 7 pages, 5 figure

    Photon-Mediated Quantum Gate between Two Trapped Neutral Atoms in an Optical Cavity

    Full text link
    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2μs2\,\mathrm{\mu s}. We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a CNOT. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.Comment: 10 pages including appendix, 5 figure

    Cavity Carving of Atomic Bell States

    Full text link
    We demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement. We show the successful implementation of two different protocols and the generation of all four Bell states with a maximum fidelity of (90+-2)%. The protocol works for any distance between cavity-coupled atoms, and no individual addressing is required. Our result constitutes an important step towards applications in quantum networks, e.g. for entanglement swapping in a quantum repeater.Comment: 9 pages, 7 figures including Supplemen

    Deterministic creation of entangled atom-light Schr\"odinger-cat states

    Full text link
    Quantum physics allows for entanglement between microscopic and macroscopic objects, described by discrete and continuous variables, respectively. As in Schr\"odinger's famous cat gedanken experiment, a box enclosing the objects can keep the entanglement alive. For applications in quantum information processing, however, it is essential to access the objects and manipulate them with suitable quantum tools. Here we reach this goal and deterministically generate entangled light-matter states by reflecting a coherent light pulse with up to four photons on average from an optical cavity containing one atom. The quantum light propagates freely and reaches a remote receiver for quantum state tomography. We produce a plethora of quantum states and observe negative-valued Wigner functions, a characteristic sign of non-classicality. As a first application, we demonstrate a quantum-logic gate between an atom and a light pulse, with the photonic qubit encoded in the phase of the light field.Comment: includes Methods and Supplementary Informatio

    Detecting an Itinerant Optical Photon Twice without Destroying It

    Get PDF
    Nondestructive quantum measurements are central for quantum physics applications ranging from quantum sensing to quantum computing and quantum communication. Employing the toolbox of cavity quantum electrodynamics, we here concatenate two identical nondestructive photon detectors to repeatedly detect and track a single photon propagating through a 60m60\,\mathrm{m} long optical fiber. By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about two orders of magnitude, we experimentally verify a key practical benefit of cascaded non-demolition detectors compared to conventional absorbing devices.Comment: 8 pages, 6 figure

    S100A9 is indispensable for survival of pneumococcal pneumonia in mice

    Full text link
    S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+^{2+} levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620)

    Diagnostic performance of line-immunoassay based algorithms for incident HIV-1 infection

    Get PDF
    Background: Serologic testing algorithms for recent HIV seroconversion (STARHS) provide important information for HIV surveillance. We have previously demonstrated that a patient's antibody reaction pattern in a confirmatory line immunoassay (INNO-LIA™ HIV I/II Score) provides information on the duration of infection, which is unaffected by clinical, immunological and viral variables. In this report we have set out to determine the diagnostic performance of Inno-Lia algorithms for identifying incident infections in patients with known duration of infection and evaluated the algorithms in annual cohorts of HIV notifications. Methods: Diagnostic sensitivity was determined in 527 treatment-naive patients infected for up to 12 months. Specificity was determined in 740 patients infected for longer than 12 months. Plasma was tested by Inno-Lia and classified as either incident (< = 12 m) or older infection by 26 different algorithms. Incident infection rates (IIR) were calculated based on diagnostic sensitivity and specificity of each algorithm and the rule that the total of incident results is the sum of true-incident and false-incident results, which can be calculated by means of the pre-determined sensitivity and specificity. Results: The 10 best algorithms had a mean raw sensitivity of 59.4% and a mean specificity of 95.1%. Adjustment for overrepresentation of patients in the first quarter year of infection further reduced the sensitivity. In the preferred model, the mean adjusted sensitivity was 37.4%. Application of the 10 best algorithms to four annual cohorts of HIV-1 notifications totalling 2'595 patients yielded a mean IIR of 0.35 in 2005/6 (baseline) and of 0.45, 0.42 and 0.35 in 2008, 2009 and 2010, respectively. The increase between baseline and 2008 and the ensuing decreases were highly significant. Other adjustment models yielded different absolute IIR, although the relative changes between the cohorts were identical for all models Conclusions: The method can be used for comparing IIR in annual cohorts of HIV notifications. The use of several different algorithms in combination, each with its own sensitivity and specificity to detect incident infection, is advisable as this reduces the impact of individual imperfections stemming primarily from relatively low sensitivities and sampling bias

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM
    corecore