30 research outputs found

    Regions at Risk in the Knee Joint of Young Professional Soccer Players: Longitudinal Evaluation of Early Cartilage Degeneration by Quantitative T2 Mapping in 3 T MRI

    Get PDF
    Purpose The study aims to detect regions at risk for (pre-)osteoarthritis in the tibiofemoral joint of young professional soccer players by evaluating cartilage composition by T2 mapping in a 3 T magnetic resonance imaging setting. Methods In this longitudinal study, 20 professional adolescent soccer players were included. Tibiofemoral cartilage was assessed by quantitative T2 mapping and T2 values were evaluated by regions of interest analysis. Statistical evaluation, using Wilcoxon signed-rank tests, was performed to compare global T2 values and subregional T2 values between a baseline and a follow-up investigation 4.3 years later. Based on the average of playing time (15 years) we divided the cohort in 2 groups and differences were evaluated. Results When comparing baseline and follow-up, our findings showed statistically significant increases of the global medial tibial and femoral T2 values. The most noticeable results of the subregional T2 analysis were statistically significant increases in the medial posterior zones (deep femoral 36.1 vs. 39.5, P = 0.001; superficial femoral 57.0 vs. 62.4, P = 0.034; deep tibial 28.3 vs. 34.1, P = 0.009; superficial tibial 43.2 vs. 55.3, P = 0.002). Conclusion The elevation of T2 values in the medial, especially medial posterior, compartment of the knee joint indicates that these regions are at risk for early cartilage degeneration already at the time of adolescence. The findings can help individualize and optimize training concepts and to be aware of the chronic stress on these vulnerable areas. Prevention programs should be established in young players to avoid further cartilage damage

    Magnetic Resonance Imaging of Cartilage Repair: A Review

    Get PDF
    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries

    Quantitative T2 Mapping Shows Increased Degeneration in Adjacent Intervertebral Discs Following Kyphoplasty

    Get PDF
    Objective A minimally invasive treatment of osteoporotic and nonosteoporotic thoracic and lumbar spine fractures is cement augmentation (kyphoplasty). Little is known about the impact on adjacent intervertebral discs. A quantitative magnetic resonance imaging (MRI) approach in addition to morphological MRI is desirable to evaluate changes in the intervertebral disc. Our study aims to evaluate the feasibility of T2 mapping for the detection of subtle changes in the intervertebral discs in spines after kyphoplasty. Design Intervertebral discs were assessed by quantitative MRI (3.0 T) using T2 relaxation time mapping. Region of interest (ROI; 6 per disc) analyses were performed. The ROIs at the anterior and posterior edges were interpreted as annulus fibrosus (AF). The 2 very inner zones were regarded as nucleus pulposus (NP) and the regions in between as intermediate transition zone. We compared T2 relaxation time values of intervertebral discs adjacent to the vertebrae after kyphoplasty with those nonadjacent to vertebrae after kyphoplasty, especially in the NP. Results The analysis of the ROIs showed that the intervertebral discs of the adjacent vertebral segments are associated with reduced T2 values compared to those that are nonadjacent to the affected vertebrae. Conclusion This study is to our knowledge the first investigation of intervertebral discs after kyphoplasty by quantitative MRI. Quantitative T2 mapping shows increased degeneration in adjacent intervertebral discs following kyphoplasty. Besides its contribution to a broader knowledge of postoperative changes after kyphoplasty, our findings may help to improve differentiation between healthy and degenerated intervertebral discs using these techniques

    Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Get PDF
    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair

    Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla

    No full text
    The double-echo-steady-state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip-angle of 90 degrees , the calculated T2 becomes independent of T1, but with very low signal-to-noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip-angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip-angles were compared with standard multiecho, spin-echo T2. Furthermore, DESS-T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip-angle of 33 degrees was the best compromise for the combination of DESS-T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (approximately 20% relative difference between SE-T2 and DESS-T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS-T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one-step examination

    Magnetic Resonance Imaging of Cartilage Repair: A Review

    No full text
    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries

    Morphological and biochemical T2 evaluation of cartilage repair tissue based on a hybrid double echo at steady state (DESS-T2d) approach

    No full text
    To use a new approach which provides, based on the widely used three-dimensional double-echo steady-state (DESS) sequence, in addition to the morphological information, the generation of biochemical T2 maps in one hybrid sequence

    Advanced morphological 3D magnetic resonance observation of cartilage repair tissue (MOCART) scoring using a new isotropic 3D proton-density, turbo spin echo sequence with variable flip angle distribution (PD-SPACE) compared to an isotropic 3D steady-state free precession sequence (True-FISP) and standard 2D sequences

    No full text
    To evaluate a new isotropic 3D proton-density, turbo-spin-echo sequence with variable flip-angle distribution (PD-SPACE) sequence compared to an isotropic 3D true-fast-imaging with steady-state-precession (True-FISP) sequence and 2D standard MR sequences with regard to the new 3D magnetic resonance observation of cartilage repair tissue (MOCART) score
    corecore