1,359 research outputs found

    Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol

    Get PDF
    Poly(vinyl alcohol) (PVA)-stabilized Au nanoparticles (NPs) were synthesized by colloidal methods in which temperature variations (−75 to 75 °C) and mixed H2O/EtOH solvent ratios (0, 50, and 100 vol/vol) were used. The resulting Au NPs were immobilized on TiO2 (P25), and their catalytic performance was investigated for the liquid phase oxidation of glycerol. For each unique solvent system, there was a systematic increase in the average Au particle diameter as the temperature of the colloidal preparation increased. Generation of the Au NPs in H2O at 1 °C resulted in a high observed activity compared with current Au/TiO2 catalysts (turnover frequency = 915 h–1). Interestingly, Au catalysts with similar average particle sizes but prepared under different conditions had contrasting catalytic performance. For the most active catalyst, aberration-corrected high angle annular dark field scanning transmission electron microscopy analysis identified the presence of isolated Au clusters (from 1 to 5 atoms) for the first time using a modified colloidal method, which was supported by experimental and computational CO adsorption studies. It is proposed that the variations in the populations of these species, in combination with other solvent/PVA effects, is responsible for the contrasting catalytic properties

    Optimised hydrogen production by aqueous phase reforming of glycerol on Pt/Al2O3

    Get PDF
    Aqueous phase reforming of glycerol was studied over a series of γ-Al2O3 supported metal nanoparticle catalysts for hydrogen production in a batch reactor. Of the metals studied, Pt/Al2O3 was found to be the most active catalyst under the conditions tested. A further systematic study on the impact of reaction parameters, including stirring speed, pressure, temperature, and substrate/metal molar ratio, was conducted and the optimum conditions for hydrogen production (and kinetic regime) were determined as 240 °C, 42 bar, 1000 rpm, and substrate/metal molar ratio ≥ 4100 for a 10 wt% glycerol feed. The glycerol conversion and hydrogen yield achieved at these conditions were 18% and 17%, respectively, with negligible CO and CH4 formation. Analysis of the spent catalyst using FTIR provides an indication that the reaction pathway includes glycerol dehydrogenation and dehydration steps in the liquid phase in addition to typical reforming and water gas shift reactions in the gas phase

    Optimised hydrogen production by aqueous phase reforming of glycerol on Pt/Al2O3

    Get PDF
    Aqueous phase reforming of glycerol was studied over a series of γ-Al2O3 supported metal nanoparticle catalysts for hydrogen production in a batch reactor. Of the metals studied, Pt/Al2O3 was found to be the most active catalyst under the conditions tested. A further systematic study on the impact of reaction parameters, including stirring speed, pressure, temperature, and substrate/metal molar ratio, was conducted and the optimum conditions for hydrogen production (and kinetic regime) were determined as 240 °C, 42 bar, 1000 rpm, and substrate/metal molar ratio ≥ 4100 for a 10 wt% glycerol feed. The glycerol conversion and hydrogen yield achieved at these conditions were 18% and 17%, respectively, with negligible CO and CH4 formation. Analysis of the spent catalyst using FTIR provides an indication that the reaction pathway includes glycerol dehydrogenation and dehydration steps in the liquid phase in addition to typical reforming and water gas shift reactions in the gas phase

    Supported metal nanoparticles with tailored catalytic properties through sol-immobilisation: applications for the hydrogenation of nitrophenols

    Get PDF
    The use of sol-immobilisation to prepare supported metal nanoparticles is an area of growing importance in heterogeneous catalysis; it affords greater control of nanoparticle properties compared to conventional catalytic routes e.g. impregnation. This work, and other recent studies, demonstrate how the properties of the resultant supported metal nanoparticles can be tailored by adjusting the conditions of colloidal synthesis i.e. temperature and solvent. We further demonstrate the applicability of these methods to the hydrogenation of nitrophenols using a series of tailored Pd/TiO2 catalysts, with low Pd loading of 0.2 wt%. Here, the temperature of colloidal synthesis is directly related to the mean particle diameter and the catalytic activity. Smaller Pd particles (2.2 nm, k = 0.632 min−1, TOF = 560 h−1) perform better than their larger counterparts (2.6 nm, k = 0.350 min−1, TOF = 370 h−1) for the hydrogenation of p-nitrophenol, with the catalyst containing smaller NPs found to have increased stability during recyclability studies, with high activity (>90% conversion after 5 minutes) maintained across 5 catalytic cycles

    Investigation of MoOx/Al2O3 under Cyclic Operation for Oxidative and Non-Oxidative Dehydrogenation of Propane

    Get PDF
    A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains highly dispersed Mo oxide species in the +6 oxidation state with tetrahedral coordination as [MoVIO4]2− moieties. In situ X-ray Absorption Spectroscopy (XAS) shows that [MoVIO4]2− is present during the first ODP run of the reaction cycle and is reduced to MoIVO2 in the following DP run. The reduced species are partly re-oxidised in the subsequent second ODP run of the reaction cycle. The partly re-oxidised species exhibit oxidation and coordination states that are lower than 6 but higher than 4 and are referred to as MoxOy. These species significantly improved propene formation (relatively 27% higher) in the second ODP run at similar propane conversion activity. Accordingly, the initial tetrahedral [MoVIO4]2− present during the first ODP run of the reaction cycle is active for propane conversion; however, it is unselective for propene. The reduced MoIVO2 species are relatively less active and selective for DP. It is suggested that the MoxOy species generated by the reaction cycle are active and selective for ODP. The vibrational spectroscopic data indicate that the retained surface species are amorphous carbon deposits with a higher proportion of aromatic/olefinic like species

    Extracting structural information of Au colloids at ultra-dilute concentrations: Identification of growth during nanoparticle immobilization

    Get PDF
    Sol-immobilization is increasingly used to achieve supported metal nanoparticles (NPs) with controllable size and shape; it affords a high degree of control of the metal particle size and yields a narrow particle size distribution. Using state-of-the-art beamlines, we demonstrate how X-ray absorption fine structure (XAFS) techniques are now able to provide accurate structural information on nano-sized colloidal Au solutions at mM concentrations. This study demonstrates: (i) the size of Au colloids can be accurately tuned by adjusting the temperature of reduction, (ii) Au concentration, from 50 mM to 1000 mM, has little influence on the average size of colloidal Au NPs in solution and (iii) the immobilization step is responsible for significant growth in Au particle size, which is further exacerbated at increased Au concentrations. The work presented demonstrates that an increased understanding of the primary steps in sol-immobilization allows improved optimization of materials for catalytic application

    Identification of single-site gold catalysis in acetylene hydrochlorination

    Get PDF
    There remains considerable debate over the active form of gold under operating conditions of a recently validated gold catalyst for acetylene hydrochlorination. We have performed an in situ x-ray absorption fine structure study of gold/carbon (Au/C) catalysts under acetylene hydrochlorination reaction conditions and show that highly active catalysts comprise single-site cationic Au entities whose activity correlates with the ratio of Au(I):Au(III) present. We demonstrate that these Au/C catalysts are supported analogs of single-site homogeneous Au catalysts and propose a mechanism, supported by computational modeling, based on a redox couple of Au(I)-Au(III) species

    Impact of Nanoparticle-Support Interactions in Co₃O₄/Al₂O₃ Catalysts for the Preferential Oxidation of Carbon Monoxide

    Get PDF
    Different supporting procedures were followed to alter the nanoparticle-support interactions (NPSI) in two Co3O4/Al2O3 catalysts, prepared using the reverse micelle technique. The catalysts were tested in the dry preferential oxidation of carbon monoxide (CO-PrOx) while their phase stability was monitored using four complementary in situ techniques, viz., magnet-based characterization, PXRD, and combined XAS/DRIFTS, as well as quasi in situ XPS, respectively. The catalyst with weak NPSI achieved higher CO2 yields and selectivities at temperatures below 225 °C compared to the sample with strong NPSI. However, relatively high degrees of reduction of Co3O4 to metallic Co were reached between 250 and 350 °C for the same catalyst. The presence of metallic Co led to the undesired formation of CH4, reaching a yield of over 90% above 300 °C. The catalyst with strong NPSI formed very low amounts of metallic Co (less than 1%) and CH4 (yield of up to 20%) even at 350 °C. When the temperature was decreased from 350 to 50 °C under the reaction gas, both catalysts were slightly reoxidized and gradually regained their CO oxidation activity, while the formation of CH4 diminished. The present study shows a strong relationship between catalyst performance (i.e., activity and selectivity) and phase stability, both of which are affected by the strength of the NPSI. When using a metal oxide as the active CO-PrOx catalyst, it is important for it to have significant reduction resistance to avoid the formation of undesired products, e.g., CH4. However, the metal oxide should also be reducible (especially on the surface) to allow for a complete conversion of CO to CO2 via the Mars-van Krevelen mechanism

    The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3

    Get PDF
    The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol-gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood
    • …
    corecore