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Abstract 

Aqueous phase reforming of glycerol was studied over a series of γ-Al 2O3 supported metal 
nanoparticle catalysts for hydrogen production in a batch reactor. Of the metals studied, 
Pt/Al2O3 was found to be the most active catalyst under the conditions tested. A further 
systematic study on the impact of reaction parameters, including stirring speed, pressure, 
temperature, and substrate/metal molar ratio, was conducted and the optimum conditions for 
hydrogen production (and kinetic regime) were determined as 240 °C, 42 bar, 1000 rpm, and 
substrate/metal molar ratio ≥ 4100 for a 10 wt% glycerol feed. The glycerol conversion and 
hydrogen yield achieved at these conditions were 18% and 17%, respectively, with negligible 
CO and CH4 formation. Analysis of the spent catalyst using FTIR provides an indication that 
the reaction pathway includes glycerol dehydrogenation and dehydration steps in the liquid 
phase in addition to typical reforming and water gas shift reactions in the gas phase.   
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1. Introduction 

The focus on mitigating global climate change and replacing petroleum based energy 

sources is growing rapidly which has boosted the research interest towards alternative and 

renewable energy strategies. Hydrogen production is one of the most important alternative 

energy technologies for meeting future global energy needs. It is environmentally clean and 

efficient, compared to conventional petroleum-based fuels [1-9]. Several biomass-derived 

oxygenated compounds such as methanol, sorbitol, glycerol, ethylene glycol, and ethanol have 

been studied in aqueous phase reforming (APR) processes to produce hydrogen [2, 4, 10]. Of 
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these, glycerol is of particular interest because of its ample availability (~10 wt%) as a by-

product in biodiesel production from transesterification of vegetable oils or animal fats [1, 11-

13]. With increasing biodiesel production, the crude glycerol is also consequently produced in 

substantial amounts and one of the promising ways to utilise this crude glycerol is to produce 

hydrogen and other value-added products by reforming processes [14-17]. 

APR of glycerol occurs according to the following stoichiometric reaction [1-4, 6, 11-

13, 18, 19]: 

C3H8O3 + 3H2O → 7H2 + 3CO2      (1) 

This can be broken down into glycerol decomposition (2) and the water gas shift 

reaction (3).  

C3H8O3 → 4H2 + 3CO   (2) 

CO + H2O → CO2 + H2   (3) 

The further reaction of CO and/or CO2 with H2 results in methanation or Fischer–

Tropsch reactions, and other side reactions include methane dry reforming and/or 

decomposition, carbon monoxide disproportionation (Boudouard reaction), and carbon 

gasification. Thermodynamically, the APR process is favourable at significantly lower 

temperatures (~227 °C) and pressures high enough to keep water in the liquid phase, where the 

WGS reaction is facilitated. This makes it possible to generate hydrogen with low amounts of 

CO in the product stream [4, 9, 20]. In addition, the use of higher pressures in this process 

facilitates the effective purification of H2-rich effluent by adsorption or membrane technology 

[4, 21]. Also, the APR process offers a greater possibility for directly using crude glycerol as 

the feedstock [15, 22]. 

The different reaction pathways that lead to various liquid and gaseous by-products 

during glycerol APR have been reported earlier and the main catalytic route for the production 

of H2 involves the cleavage of C–C bonds as well as C–H and/or O–H bonds to form adsorbed 
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species on the catalyst surface [6, 12, 23, 24]. The catalyst must promote the WGS reaction for 

the removal of adsorbed CO species, but must not favour C–O bond cleavage and 

hydrogenation of adsorbed CO or CO2, that lead to undesired by-products [1, 2, 23]. Dumesic 

and co-workers were the first to develop APR of various biomass-derived compounds. They 

reported that Group VIII metals, particularly Pt, Pd and Ni, were the most effective catalysts, 

with Pt being the best monometallic catalyst of all, in terms of activity and selectivity for APR 

[4, 25, 26]. Davda et al. found the reaction rates decreased in the order of Pt~Ni > Ru > Rh~Pd 

> Ir at temperatures from 210 to 225 °C [27]. Several supports have also been reported to 

influence the activity and selectivity of monometallic catalysts [23-36] and among the different 

supports investigated, Pt supported on γ-Al 2O3 showed the highest hydrogen selectivity (>90%) 

[37]. 

Earlier studies have focussed mainly on the choice of catalysts for APR of glycerol, but 

not many systematic studies reported aimed at optimizing the reaction conditions for Pt/Al2O3 

in a batch reactor. Ozgur et al. conducted a study of the effect of process variables on 1 wt% 

Pt/Al2O3 catalyst, however only the effect of temperature was investigated in a batch reactor 

[9]. Although this study provides insights on three important process variables, it does not 

provide the optimum conditions for a batch system. They also observed CO as a product in all 

their batch experiments (~5-8 mol%). In their case, the system pressure could not be maintained 

above the vapour pressure of water at all temperatures, and water was not kept in the liquid 

phase, which is essential for APR. Recently, Seretis et al.[38] studied the effect of reaction 

temperature, catalyst weight, and feed concentration over 5 wt% Pt/Al2O3 catalyst in a batch 

reactor, but the study did not include the effect of stirring speed, which is an essential parameter 

to ensure the reaction is not diffusion limited.  

The focus of the present study is to address these important factors and to find the 

appropriate reaction conditions which favours the APR of glycerol for H2 production with 
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negligible CO formation in a batch reactor. We present systematic studies of γ-Al 2O3 supported 

metal catalysts supplied by Johnson Matthey UK and investigate the impact of reaction 

parameters in a batch reactor (stirring speed, pressure, temperature, and substrate/metal molar 

ratio) on the most promising Pt/Al2O3 catalyst. Our results also give insight into the reaction 

pathway. 

2. Experimental 

2.1. Catalyst Synthesis and Characterization 

The catalysts studied for this work were prepared by Johnson Matthey UK, using their 

proprietary routes. Four research grade catalysts, namely, Pt/Al2O3, Pd/Al2O3, Au/Al2O3, and 

Rh/Al2O3 (all 2 wt% metal loading with γ-Al 2O3 used as the support) were synthesized using 

incipient wetness impregnation method followed by calcination in air at 500 °C for 2 hours. 

No further activation treatments were carried out prior to reaction. 

The catalysts were characterized by BET, Microwave plasma - atomic emission 

spectrometry (MP-AES), Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction 

(XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy 

(FTIR).  

The surface area of the calcined catalysts was measured using the BET method. The 

samples were first degassed at 140 °C under vacuum using a FloVac Degasser. Analysis was 

then carried out on a Quadrasorb EVO instrument supplied by Quantachrome. The elemental 

analysis by MP-AES was performed using an Agilent 4100 Microwave Plasma-Atomic 

Emission Spectrometer. Solid samples were first digested in Aqua Regia using an Anton Paar 

Multiwave 3000 and then diluted in deionised water to form a 0.1 wt% solution. Standards 

were made up using 10% aqua regia and used to calibrate the instrument before the samples 

were run.  
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EDS analysis was performed on a JSM-6610LV scanning electron microscope (JEOL) 

fitted with Oxford Instruments Xmax 80mm EDS detector running Aztec analysis software. 

The powder samples were dispersed on conductive carbon tabs placed on aluminium stubs. 

XRD patterns were recorded on a Rigaku Miniflex 600 benchtop powder X-ray diffractometer 

equipped with a 6-position autosampler and Cu Kα radiation source. The 2θ angles were 

scanned from 5 to 80˚ at a rate of 5 ˚/min. 

TEM experiments were carried out on a JEM-2100Plus electron microscope with a 200 

kV accelerating voltage. Samples for TEM were prepared by dispersing the supported catalysts 

in methanol and then dropping the solution on 300 mesh carbon-coated copper grids. FTIR 

spectra were obtained using a Thermo Nicolet iS10 spectrometer with a DTGS detector. The 

sample was placed on the surface of a diamond crystal attenuated total reflectance (ATR) cell 

and spectra were collected at 2 cm-1 resolution and 32 scans.  

2.2. Catalytic tests 

Glycerol reforming APR was carried out in a 50 ml autoclave batch reactor (Parr Series 

4590 Bench Top Micro Reactor equipped with magnetic drive stirrer and a Parr 4848B Reactor 

Controller system). The catalyst was mixed with 20 ml of 10 wt% aqueous glycerol solution. 

The reactor was sealed and the air inside was purged with argon few times before starting the 

reaction. The tests were performed at various stirring speeds (300 – 1500 rpm), pressures (28 

– 49 bar), temperatures (225 – 265 °C), and substrate/metal molar ratios (3079 – 8210) to 

identify the optimum set of reaction conditions that leads to the best possible hydrogen yield 

and glycerol conversion.  

Gas products were collected in a gas sampling bag after 2 hours of reaction and 

analyzed using a Shimadzu gas chromatograph system (GC-2014 with TCD and FID), 

equipped with Hayesep N and Mol Sieve 5A packed columns. In the liquid phase, the 

concentration of unreacted glycerol was analyzed by a Shimadzu Prominence HPLC installed 
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with a MetaCarb 67H column and RID-10A refractive index detector. Conversion was 

calculated based on the moles of glycerol consumed. The experiments could be reproduced 

with a relative error of 5%. Potential metal leaching into the reaction mixture was also analyzed 

using MP-AES analysis. For this, concentrated HCl was added to the spent reaction solution 

after filtering to produce a 10% HCl solution. Calibration standards were also made in 10% 

HCl. The minimum detection limit of the MP-AES instrument using this method was 100 ppb. 

The catalyst reusability was tested using the following procedure. A reaction was 

carried out in the batch reactor as described above and the conversion was determined. An 

equivalent amount of feed solution (10 wt% aqueous glycerol), corresponding to the calculated 

conversion, was added to the same reactor and reaction started again. This procedure was 

followed for five consecutive cycles.  

The glycerol conversion, H2 yield and gas-phase product distribution (mol%) were 

calculated according to the following definitions: 

Glycerol conversion (%) = 
��	–	��	

��
. 100   

H2 yield (%) = 
	2	��	
������	���	������

�����������		2	����	���
����	���������
. 100      

Gas-phase product distribution (mol%) = 
Moles of gas product i produced

Total moles of gas products	(H2,	CO,	CO2,	CH4)
. 100      

3. Results and Discussion 

3.1. Materials Characterization 

BET and elemental analysis results are provided in the Supporting Information (Table 

S1). Fig. 1 shows the XRD patterns for all catalysts and indicates the presence of characteristic 

peaks of γ-Al 2O3 phase at 2θ = 20°, 33°, 37.5°, 39.8°, 46°, 61°, and 67°, in agreement with the 

literature [5, 39-41]. These peaks correspond to the (111), (220), (311), (222), (400), (511) and 

(440) reflections of γ-Al 2O3 respectively [40, 41]. For Au/Al2O3, in addition to the typical peaks 

of the γ-Al 2O3 phase, some additional peaks attributable to gold in the metallic state (2θ = 
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38.5°, 44.9° and 65°), were also observed [42]. The average gold crystallite size was estimated 

to be 7.4 nm (calculated using Scherrer equation for the Au(111) diffraction peak at 2θ = 38.5°). 

In the case of Pt, Pd, and Rh catalysts, the lack of clear reflections attributable to metallic 

phases indicates that the size domains are too small to be detected by conventional XRD.  It is 

also difficult to carry out any structure identification of the metal phase due to the overlapping 

of their reflections with those of γ-alumina. 

TEM was performed on all catalysts to determine the average particle (Fig. 2). From 

TEM, an average particle size of 1.6, 2.4, 4, and 7 nm was determined for Pt/Al2O3, Pd/Al2O3, 

Rh/Al2O3, and Au/Al2O3 catalysts, respectively. In the case of Au/Al2O3, the value of Au 

particle size obtained from TEM (7 nm) is close to the crystallite size value obtained from XRD 

data (7.4 nm).  

FTIR analysis was performed on the catalysts to identify any adsorbed species that is 

present on the catalyst surface (See Supporting information, Fig. S1). The absence of any major 

IR bands other than weak vibrations due to adsorbed water suggested clean catalyst surfaces 

with no impurities prior to catalytic reaction.  

3.2. Catalytic tests 

This section compares the activities of all the catalysts and identifies the best catalyst 

on which further systematic studies were focused on. Fig. 3 summarises the glycerol conversion 

and H2 yields for all the catalysts at 270 °C, PAr = 55 bar, 500 rpm, 3 wt% glycerol solution, 

and 60 mg catalyst (substrate/metal = 1232 mol/mol) after 4 h reaction time. Table 1 lists the 

H2 TOFs, rates of production and other activity results. The products detected in the gas phase 

were only H2, CH4, and CO2 (CO was negligible and below GC detection limits, which was 

0.5% CO). Since the system pressure for the APR reaction was much higher than vapor 

pressure of water at all conditions tested in our study, the complete conversion of CO through 

water gas shift reaction could be achieved as reported elsewhere [9, 24]. 
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From the results, it is clearly evident that Pt/Al2O3 showed the highest activity among 

all catalysts at similar reaction conditions. At 270 °C, Pt/Al2O3 showed almost complete 

conversion with the highest H2 yield (35%). The other catalysts showed conversions below 

20% and hydrogen yields less than 4%. The rates of H2 production were also much lower 

compared to Pt/Al2O3 (Table 1). We should note that such high temperatures would lead to 

significant methane formation as well. Of all the catalysts, Pd/Al2O3 showed the highest 

methane formation of 7.3 mol%. Among the four catalysts tested, Pt/Al2O3 is the most active 

catalyst for glycerol reforming. This catalyst was chosen to conduct further systematic studies 

in order to optimize the reaction conditions. The remaining study is thus focused on exploring 

the effects of various reaction variables (stirring speed, pressure, temperature, and 

substrate/metal molar ratio) and to identify the kinetic regime for the most active Pt/Al2O3 

catalyst.    

4. Optimisation of glycerol reforming conditions over the most active Pt/Al2O3 catalyst 

4.1. Effect of stirring speed 

The effect of stirring speed on catalytic performance was studied in order to exclude 

the presence of mass transfer effects which might limit the rate of reaction. Fig. 4 shows the 

effect of stirring speed on glycerol conversion, H2 yield, and gas-phase product distribution for 

the Pt/Al2O3 catalyst at 240 °C, 42 bar, 10 wt% glycerol solution, and 60 mg catalyst 

(substrate/metal = 4105 mol/mol) after 2 h of reaction. 

The glycerol conversion increases steadily up to 1000 rpm (Fig. 4a) after which it 

remains almost constant, making 1000 rpm the optimum stirring speed to avoid any diffusion 

limitations. This observation suggests that at lower stirring rates, the transfer of glycerol from 

the bulk to the catalyst surface is rate-limiting. The molar ratio of H2 to CO2 for these tests was 

higher than the theoretical ratio of 2.33 (between 2.7 and 3.0), which indicated the occurrence 

of other hydrogen producing reactions such as WGS or dehydrogenation besides the main APR 



9 

 

reaction [2, 43]. The major products in the gas phase are H2 and CO2, with much less CH4. 

There is no significant change in product distribution with change in stirring speed (Fig. 4b) 

and the most remarkable feature to be noted is the methane suppression at all conditions tested 

in this study (less than 1 mol% methane at all stirring speeds). With increase in stirring speed, 

as we approach the surface reaction limited kinetic regime, the initially formed hydrogen 

participates in further reactions, thereby decreasing its yield. 

4.2. Effect of temperature 

The reaction temperature serves as one of the most important parameters which has a 

significant effect on the rate and selectivity of kinetically controlled reactions. It is known that 

methane formation is thermodynamically favorable at all temperatures and so methanation 

must be kinetically limited in order to increase hydrogen yield and selectivity.  

The influence of reaction temperature on glycerol conversion and H2 yield for the 

Pt/Al2O3 catalyst is presented in Fig. 5. Table 2 lists the corresponding product selectivities, 

rates of H2 production and TOFs of H2 and glycerol. 

The increase of reaction temperature from 225 to 265 °C results in an increase of 

glycerol conversion from 10% to 47%. As a result, the rate of H2 production is more than 20 

times higher at 265 °C compared to 225 °C. Hydrogen distribution (mol%) decreases while 

that of CO2 increases with increase in reaction temperature due to the higher conversions 

achieved at higher temperatures (Table 2), as reported by Seretis et al.[38] Although the 

conversions and H2 yields are very high at increased temperatures (47% conversion and 52% 

H2 yield at 265 °C), the formation of undesired methane also increased remarkably at the 

expense of hydrogen. This behavior is expected from a thermodynamic point of view, because 

thermodynamically, glycerol reforming is a highly endothermic reaction, and hence higher 

temperatures lead to higher hydrogen yields, but also methanation. Cortright et al. studied the 

APR of sugars and alcohols for H2 production using a Pt-based catalyst and found that high 
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operating temperatures resulted in low H2 selectivity, high alkane selectivity, but high biomass 

conversions [25]. Similar trends were reported by Ozgur et al. on 1 wt-% Pt/Al2O3 catalyst [9]. 

The results from this study clearly demonstrate that 240 °C is the optimum temperature. 

4.3. Effect of pressure 

Fig. 6 shows the effect of total pressure on glycerol conversion, product selectivities, 

and H2 yield for the Pt/Al2O3 catalyst at 240 °C, 1000 rpm, 10 wt% glycerol solution, and 60 

mg catalyst (substrate/metal = 4105 mol/mol) after 2 h of reaction. With increase in pressure, 

the conversion goes through a maximum of 17.9% at 42 bar. 

Lower pressure leads to a higher H2 yield of 46.7%, but the conversion is only 12.2%. 

At this pressure, 28 bar, which is the autogenous pressure at 240 °C, the H2/CO2  molar ratio 

was much higher (3.37) as compared to that at all other conditions tested in this study (range 

from 2.2 to 3.0). In most of our experiments, the H2/CO2 ratio was found to be typically higher 

than the stoichiometry of the reforming reaction (H2/CO2 = 2.33), which suggests that more 

hydrogen was being produced by a secondary reaction like WGS or dehydrogenation. This 

result also shows that the hydrogen formed via the reforming or WGS reaction is not being 

used for the hydrogenation of any unsaturated intermediates, as was the case reported by 

Wawrzetz et al.[43]. They observed a H2/CO2 ratio of ~1.9, which they attributed the difference 

to a fraction of hydrogen being used for the hydrogenation of unsaturated intermediates. In our 

case, the results suggest that the hydrogen formed was not being used for any further 

hydrogenation reactions. When compared to studies at similar conditions, the TOF values 

obtained in our study are significantly higher. Wawrzetz et al.[43] reported a H2 TOF of ~3 

mol.molPt
-1.min-1 and CO2 TOF of ~0.9 mol.molPt

-1.min-1 at 225 °C and 29 bar on a 3 wt% 

Pt/Al2O3 catalyst and 10 wt% glycerol solution. At 240 °C and 28 bar on a 2 wt% Pt/Al2O3 

catalyst and 10 wt% glycerol solution, our TOF values are H2 = 13.1 and CO2 = 3.9 mol.molPt
-

1.min-1. 
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4.4. Effect of substrate/metal molar ratio 

Table 3 shows the activity results at different substrate/metal molar ratios (SMMR), 

which was performed to identify the regime in which the reaction is kinetically limited. 

Initially, the experiments were carried out at substrate/metal molar ratios of 6158, 4105 and 

3079 mol/mol, corresponding to 40, 60 and 80 mg of catalyst, respectively. From the results, it 

was observed that by decreasing the SMMR from 6158 to 4105, the conversion increased more 

than two-fold, from 7.9 to 17.9%. This increase in conversion can be attributed to an increase 

in the number of active sites due to the increase in the mass of catalyst used. But a further 

decrease of the SMMR to 3079 (increase of the catalyst mass to 80 mg) resulted in a slight 

decrease in conversion to 16.9%, suggesting that a higher  number of active sites than required 

were now available. The continuous increase in conversion with decrease in SMMR up to 4105 

indicates that the reaction is kinetic controlled when the ratio is ≥ 4100. The reaction becomes 

diffusion limited at lower SMMRs. To confirm this proposal and to identify the optimum range 

of SMMR, two more tests were carried out (using 30 mg and 50 mg catalyst corresponding to 

SMMRs of 8210 and 4926 respectively). Fig. 7 shows the effect of different substrate/metal 

molar ratios on glycerol conversion. The conversion increases almost linearly with decrease in 

SMMR up to 4105 mol/mol. This confirms the above hypothesis that the reaction is in the 

kinetic regime when the substrate/metal molar ratio is 4100 or higher. 

From all the above series of experiments, the optimum set of reaction conditions to 

achieve the best possible hydrogen yield and glycerol conversion were identified as 240 °C, 42 

bar, 1000 rpm, and SMMR ≥ 4100 for a 10 wt% glycerol feed. At these best set of conditions, 

the other γ-Al 2O3 supported JM catalysts were tested again for comparison and the results are 

presented in the Supporting Information (Fig. S2). Pt/Al2O3 was found to be the most active 

catalyst at all conditions. 
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5. Metal leaching and catalyst reusability 

The spent reaction mixtures were analyzed for any potential metal leaching into the 

solutions using MP-AES. The result showed that the Pt concentration in the reaction solution 

was less than the detection limit (i.e., 100 ppb), which corresponds to less than 0.2% of the 

starting Pt used. The same result was obtained with reactions carried out at all conditions, 

indicating that there is no discernable leaching of Pt.  

As deactivation is a common phenomenon in liquid phase reactions, the Pt/Al2O3 

catalyst was subjected to five reaction cycles without any pre-treatment between the tests, as 

described in the experimental section. The performance upon re-use is illustrated in Fig. 8 

(Reaction conditions: 46 bar, 240 °C, 1000 rpm, 60 mg catalyst, and 10 wt% glycerol solution 

after 2 h reaction time). The results show that there is a slight increase in conversion at the end 

of the second cycle, after which there is a gradual decrease with further use. The drop in activity 

over five consecutive cycles is within ~35% of the initial conversion. Conversely, conversion 

towards gas products, and therefore hydrogen yield, decreases significantly, accompanied by a 

gradual increase in the liquid phase products. 

Many catalyst reusability studies in literature also reported a severe drop in catalytic 

activity, which they attributed to catalytic dissolution / leaching [44, 45]. In our study, MP-

AES tests of the spent liquid after reaction confirmed that there was no leaching of Pt into the 

solution. The other causes for the decrease in activity could be deactivation of the catalyst over 

time due to agglomeration or metal sintering. 

The spent catalyst was analyzed using TEM after reaction. Fig. 9 shows the TEM 

images and corresponding histogram of the spent Pt/Al 2O3 catalyst after a 2h reaction at 240 

°C, 42 bar, 1000 rpm, and 10 wt% glycerol solution (at the end of first reaction cycle). The 

particle size distribution of used catalyst is similar to that of fresh catalyst (Section 3.1), with 

a mean particle size of 2 nm. After five reaction cycles, the mean particle size of the spent 
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catalyst obtained from TEM was ~2.1 nm. This result suggests that there was no significant 

increase in size even after five consecutive experiments and the structural stability of 

the catalyst under the reaction conditions remained intact. Therefore, the decrease in catalytic 

activity with the re-use of catalyst cannot be correlated to increase in particle size or sintering. 

The decrease in conversion can thus be related to the loss of the catalyst during filtration for 

liquid analysis after each cycle. A similar observation has also been reported for Cu-based 

catalysts during recycling studies [46, 47], which they attributed the handling losses of the 

catalyst during the reaction as the essential factor leading to the decrease in glycerol 

conversion. 

6. Insights into reaction pathways using FTIR 

The spent catalysts were also analyzed using FTIR after reaction for obtaining insights 

into possible reaction pathways. The FTIR spectra of the spent catalyst after reaction together 

with that of fresh Pt/Al2O3 catalyst and pure glycerol are shown in Fig. 10. In the case of fresh 

catalyst, a weak band at 1640 cm-1, accompanied by a broad band in the range 3000-3700 cm-

1 can be attributed to the OH bending and stretching vibrations of adsorbed water on the catalyst 

surface [43, 48]. In the case of pure glycerol and spent catalyst samples, the bands at ~1670 

and 3000-3600 cm-1 can be assigned to the OH bending and stretching vibrations, that is typical 

for alcohols [49]. The intense band at ~1040 cm-1, which is present in both glycerol and spent 

catalyst samples, can be assigned to the C-O stretching vibration that is characteristic of 

glycerol [50]. The doublet band in the 2900 cm-1 region (bands at 2877 and 2940 cm-1) is also 

present in both glycerol and spent catalyst samples and can be attributed to the asymmetric and 

symmetric C-H stretching vibrations [48, 51]. In addition to these common features, the spent 

catalyst showed one unique feature of interest, a strong band at 1729 cm-1 accompanied by a 

broad band in the 2400-2700 cm-1 region. This can be assigned to the C=O and O-H valent 

vibrations of carbonyl groups, such as those found in carboxylic acids, ketones and aldehydes 
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[43, 49]. These bands are in good agreement with those observed for hydroxyacetone (1717 

cm-1), glyceraldehyde (1745 cm-1) and pyruvaldehyde (1728 cm-1) as shown by Wawrzetz et 

al. using FTIR spectroscopic experiments [43]. Hydroxyacetone is formed by the dehydration 

of glycerol which on further hydrogenation leads to propylene glycol formation. 

Glyceraldehyde is formed by the dehydrogenation of glycerol, which on further dehydration 

forms pyruvaldehyde, and subsequently gets converted to lactic acid.  

The presence of keto and aldehyde carbonyl surface intermediates indicates that 

dehydration and dehydrogenation of glycerol are the dominating pathways in the liquid phase 

in addition to typical reforming and water gas shift reactions in the gas phase. The catalytic 

results in our study also showed a H2/CO2 molar ratio higher than the theoretical reforming 

ratio, which supports the occurrence of other hydrogen producing reactions such as 

dehydrogenation. 

An analysis of the liquid products on the HPLC showed the presence of several 

unknown peaks. The results are presented in the Supporting Information (Fig. S3). On 

comparison with HPLC data of possible glycerol APR products (such as ethanol, acetaldehyde, 

ethylene glycol, propylene glycol, hydroxyacetone, glyceraldehyde and lactic acid), the 

unknown peaks matched with those of hydroxyacetone, ethylene glycol, propylene glycol, 

glyceraldehyde and lactic acid, indicating they were the most probable liquid products. Thus, 

combining the catalytic results with FTIR findings, we can conclude that ketones and aldehydes 

were the primary surface intermediates and that the APR reaction proceeded via 

dehydrogenation and dehydration of glycerol on a parallel route to reforming and WGS 

reactions. To gain a more precise understanding of adsorbed species on to the catalyst surface 

and to derive a complete reaction mechanism, more detailed in situ FTIR studies need to be 

performed. 
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7. Conclusions 

A series of γ-Al 2O3 supported metal nanoparticle catalysts were tested for glycerol APR 

to hydrogen in a batch reactor and the Pt/Al2O3 catalyst was found to be the most active and 

selective catalyst under the conditions tested. The present investigation indicates that the 

catalytic performance of the Pt catalyst is strongly influenced by stirring speed, reaction 

temperature, pressure, and substrate/metal molar ratio. It was observed that the formation of 

undesired products, especially methane, can be suppressed under certain reaction conditions. 

For the most active Pt/Al2O3 catalyst, these optimum conditions were found to be 240 °C, 42 

bar, 1000 rpm, and SMMR ≥ 4100 for reactions carried out using 10 wt% glycerol feed. 

Analysis of spent catalyst using FTIR showed the presence of adsorbed carbonyl surface 

intermediates, which when coupled with the catalytic results, gave an indication that the 

reaction proceeded via dehydrogenation and dehydration of glycerol in addition to typical 

reforming and water gas shift reactions.  

The product distribution with time-on-stream has to be studied in detail to understand 

the stability of the catalysts over longer reaction periods. Continuous reaction studies in a flow 

reactor will be our near future work as it permits detailed kinetic studies, rapid optimisation of 

reaction conditions, and assessment of the reusability of the catalyst in a single experiment as 

opposed to multiple experiments in conventional batch reactor screening.  
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Table 1. Activity results at 270 °C, 55 bar, 500 rpm, 3 wt% glycerol solution, 60 mg catalyst 
after 4 h of reaction for Pd/Al2O3, Au/Al2O3, Rh/Al2O3 and Pt/Al2O3 catalysts 

Catalyst H2/CO2 Gas product 
distribution (mol%) 

Rate of H2 production 
(mmol.gM

-1.hr-1) 
H2 TOF 

(mol.molM-1.hr-1) 
H2 CO2 CH4 

Pd/Al2O3 5.1 77.4 15.3 7.3 113.8 12.1 

Au/Al 2O3 4.8 82.8 17.2 0 30.6 6.04 
Rh/Al2O3 4.0 73.2 18.2 1.3 278.9 28.7 
Pt/Al2O3 3.4 74.8 22.3 2.9 3592.3 700.9 

 

 

 

 

Table 2. Effect of temperature over the Pt/Al2O3 catalyst at PAr = 42 bar, 1000 rpm, 60 mg catalyst, and 
10 wt% glycerol after 2 h. 

Temperature 
(°C) 

H2/CO2 Gas product distribution 
(mol%) 

TOF  (mol.molPt
-1.hr-1)a Rate of H2 production 

(mmol.gPt
-1.hr-1)a 

 H2 CO2 CH4 H2 produced GL converted 
225 3.0 75.1 24.9 0 136.4 212.2 699.1 
240 2.8 73.4 25.9 0.7 434.0 368.0 2224.6 
250 2.2 66.6 30.7 2.7 543.6 517.9 2786.3 
265 2.7 68.9 26.0 5.1 3018.0 957.0 15469.0 

a The Pt wt% value obtained from MP-AES was used for the rate and TOF calculations. 

 

 

 

Table 3. Effect of substrate/metal molar ratio over the Pt/Al 2O3 catalyst at 240 °C, PAr = 42 bar, 1000 
rpm, and 10 wt% glycerol solution after 2 h of reaction 

Catalyst weight 
(mg)  / SMMR 

Glycerol 
conversion (%) 

H2 Yield 
(%) 

H2/CO2 

30 / 8210 4.96 7.01 2.99 
40 / 6158 7.90 15.19 2.73 

50 / 4926 13.93 13.01 2.53 
60 / 4105 17.92 16.68 2.83 

80 / 3079 16.93 21.23 2.83 
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Captions for Figures 

Fig. 1. XRD patterns for the fresh catalysts (a) Pt/Al2O3 (b) Rh/Al2O3 (c) Pd/Al2O3 (d) 

Au/Al 2O3. 

Fig. 2. Representative TEM images of the fresh catalysts (a) Pt/Al2O3 (b) Pd/Al2O3 (c) 

Au/Al 2O3 (d) Rh/Al2O3 and (e) corresponding particle size distribution for the Pt/Al2O3 

catalyst. 

Fig. 3. Glycerol conversion (●) and H2 yield (■) for Pd/Al2O3, Au/Al2O3, Rh/Al2O3 and 

Pt/Al2O3 catalysts. Reaction conditions: 270 °C, PAr = 55 bar, 500 rpm, 3 wt% glycerol, 60 

mg catalyst, substrate/metal = 1232 mol/mol, 4 h reaction time.  

Fig. 4. Effect of stirring speed on (a) glycerol conversion [■] and H2 yield [●] (b) H2 [♦], CO2 

[▼], and CH4 [▲] gas product distribution (mol%) for the Pt/Al2O3 catalyst. Reaction 

conditions: 240 °C, PAr = 42 bar, 60 mg catalyst, and 10 wt% glycerol solution after 2 h. 

Fig. 5. Effect of temperature on glycerol conversion [■] and H2 yield [●] for the Pt/Al2O3  

catalyst Reaction conditions: PAr = 42 bar, 1000 rpm, 60 mg catalyst, and 10 wt% glycerol 

solution after 2 h. 

Fig. 6. Effect of pressure on glycerol conversion [■], H2 yield [●], and H2 [▲] and CO2 [∆] 

gas product distribution (mol%) for the Pt/Al2O3 catalyst. Reaction conditions: 240 °C, 1000 

rpm, 60 mg catalyst, and 10 wt% glycerol solution after 2 h. 

Fig. 7. Effect of substrate/metal molar ratio on glycerol conversion for the Pt/Al2O3 catalyst. 

Reaction conditions: 240 °C, 42 bar, 1000 rpm, and 10 wt% glycerol solution after 2 h. 

Fig. 8. Reusability tested up to five consecutive cycles - glycerol conversion [■], H2 yield [●] 

and TOF of H2 produced (▲, right side axis) for the Pt/Al2O3 catalyst. Reaction conditions: 

PAr = 46 bar, 240 °C, 1000 rpm, 60 mg catalyst, and 10 wt% glycerol solution after 2 h. 
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Fig. 9. Representative TEM images and histogram of the spent Pt/Al2O3 catalyst after 2h 

reaction at 240 °C, 42 bar, 1000 rpm, and 10 wt% glycerol solution. 

Fig. 10. FTIR spectra of (a) fresh Pt/Al2O3 catalyst before reaction (b) pure glycerol and (c) 

spent catalyst after 2h reaction at 240 °C, 42 bar, 1000 rpm, and 10 wt% glycerol solution 

(Note: the spectra of fresh catalyst (a) has been zoomed in to see clearly). 
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Fig. 2 
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Fig. 4 

 

 

 



28 

 

 

Fig. 5 
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Fig. 6 
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