5,957 research outputs found

    Direct Evidence for the Source of Reported Magnetic Behavior in "CoTe"

    Full text link
    In order to unambiguously identify the source of magnetism reported in recent studies of the Co-Te system, two sets of high-quality, epitaxial CoTex_x films (thickness \simeq 300 nm) were prepared by pulse laser deposition (PLD). X-ray diffraction (XRD) shows that all of the films are epitaxial along the [001] direction and have the hexagonal NiAs structure. There is no indication of any second phase metallic Co peaks (either fccfcc or hcphcp) in the XRD patterns. The two sets of CoTex_x films were grown on various substrates with PLD targets having Co:Te in the atomic ratio of 50:50 and 35:65. From the measured lattice parameters c=5.396A˚c = 5.396 \AA for the former and c=5.402A˚c = 5.402\AA for the latter, the compositions CoTe1.71_{1.71} (63.1% Te) and CoTe1.76_{1.76} (63.8% Te), respectively, are assigned to the principal phase. Although XRD shows no trace of metallic Co second phase, the magnetic measurements do show a ferromagnetic contribution for both sets of films with the saturation magnetization values for the CoTe1.71_{1.71} films being approximately four times the values for the CoTe1.76_{1.76} films. 59^{59}Co spin-echo nuclear magnetic resonance (NMR) clearly shows the existence of metallic Co inclusions in the films. The source of weak ferromagnetism reported in several recent studies is due to the presence of metallic Co, since the stoichiometric composition "CoTe" does not exist.Comment: 19 pages, 7 figure

    Cosmic Strings from Supersymmetric Flat Directions

    Get PDF
    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the abelian Higgs model, these flat-direction cosmic strings have the extreme Type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multi-tension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultra-high energy cosmic rays or non-thermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.Comment: 58 pages, 16 figures, v2. accepted to PRD, added comments about baryogenesis and boosted decay products from cusp annihilatio

    Time of Flight Secondary Ion Mass Spectrometric Determination of Molecular Weight Distributions of Low Polydispersity Poly(Dimethyl Siloxane) with Polyatomic Primary Ions

    Get PDF
    This work reports a comparison of oligomer and fragment ion intensities resulting from primary ion bombardment with several primary ion sources (Bin+, C60+, and Cs+) at various energies in secondary ion mass spectrometry (SIMS). Although the use of polyatomic primary ions are of great interest due to increased secondary ion efficiency and yield, we demonstrate that monatomic primary ions result in increased oligomer ion yield for polymers prepared as submonolayer films on silver substrates. The enhancement of oligomer secondary ion yield with monatomic ions is evidence that monatomic primary ions have a shallower sampling depth than polyatomic ions, resulting from a collision cascade that is less energetic at the sample surface. The results are also consistent with a lower degree of fragmentation of the resultant secondary ions, which is observed when evaluating the fragmentation data and the spectral data

    Higgs Boson Exempt No-Scale Supersymmetry with a Neutrino Seesaw: Implications for Lepton Flavor Violation and Leptogenesis

    Get PDF
    Motivated by the observation of neutrino oscillations, we extend the Higgs boson exempt no-scale supersymmetry model (HENS) by adding three heavy right-handed neutrino chiral supermultiplets to generate the light neutrino masses and mixings. The neutrino Yukawa couplings can induce new lepton flavor violating couplings among the soft terms in the course of renormalization group running down from the boundary scale. We study the effects this has on the predictions for low-energy probes of lepton flavor violation(LFV). Heavy right-handed neutrinos also provide a way to generate the baryon asymmetry through leptogenesis. We find that consistency with LFV and leptogenesis puts strong requirements on either the form of the Yukawa mass matrix or the smallness of the Higgs up soft mass. In all cases, we generically expect that new physics LFV is non-zero and can be found in a future experiment.Comment: 25 pages, 11 figures; Added a referenc

    Creating a videotape for instruction

    Get PDF
    "1/86/2M""Videotape provides some distinct advantages over other electronic media. The equipment has become more portable, easier for the non-technically trained person to use, and very cost effective when compared to 16mm film production. Creating a worthwhile instructional videotape is a time-consuming challenge. However, its proven effectiveness in teaching, plus other production advantages, make it worth the planning and production time. An hour-long lecture by a teacher can be shortened to about forty minutes on videotape, without loss of content or meaning. Time saved can be used for review, questions or discussions. The video version doesn't 'forget' key points or get side-tracked. An instructional video is often better understood by the learner who can review confusing segments right away. CAUTION: a poor lecture will not magically become better just because it is videotaped. Proper planning is vital to a quality instructional videotape. This guide is for non-technically trained persons working alone or with professionals."--First page.Judith A. Wells, Annette C. Sanders, and David H. Trinklei

    A photometricity and extinction monitor at the Apache Point Observatory

    Full text link
    An unsupervised software ``robot'' that automatically and robustly reduces and analyzes CCD observations of photometric standard stars is described. The robot measures extinction coefficients and other photometric parameters in real time and, more carefully, on the next day. It also reduces and analyzes data from an all-sky 10μm10 \mu m camera to detect clouds; photometric data taken during cloudy periods are automatically rejected. The robot reports its findings back to observers and data analysts via the World-Wide Web. It can be used to assess photometricity, and to build data on site conditions. The robot's automated and uniform site monitoring represents a minimum standard for any observing site with queue scheduling, a public data archive, or likely participation in any future National Virtual Observatory.Comment: accepted for publication in A

    An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Get PDF
    This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems

    TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    Full text link
    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024x1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 microns, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, Ups And and Chi And. TRIDENT can detect (6 sigma) a methanated companion with delta H = 9.5 at 0.5" separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.Comment: 41 pages, 16 figures, accepted for publication in PAS

    An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    Get PDF
    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with mechanical sensors were compared. The 1- minute average wind speed/direction and the 1-second peak wind speed/direction were compared
    corecore