708 research outputs found

    Field on Poincare group and quantum description of orientable objects

    Full text link
    We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner's ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincare group GG. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group Π=G×G\Pi =G\times G. All such transformations can be studied by considering a generalized regular representation of GG in the space of scalar functions on the group, f(x,z)f(x,z), that depend on the Minkowski space points xG/Spin(3,1)x\in G/Spin(3,1) as well as on the orientation variables given by the elements zz of a matrix ZSpin(3,1)Z\in Spin(3,1). In particular, the field f(x,z)f(x,z) is a generating function of usual spin-tensor multicomponent fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.Comment: 46 page

    Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions

    Full text link
    We consider two-dimensional Fermi liquids in the vicinity of a quantum transition to a phase with commensurate, antiferromagnetic long-range order. Depending upon the Fermi surface topology, mean-field spin-density-wave theory predicts two different types of such transitions, with mean-field dynamic critical exponents z=1z=1 (when the Fermi surface does not cross the magnetic zone boundary, type AA) and z=2z=2 (when the Fermi surface crosses the magnetic zone boundary, type BB). The type AA system only displays z=1z=1 behavior at all energies and its scaling properties are similar (though not identical) to those of an insulating Heisenberg antiferromagnet. Under suitable conditions precisely stated in this paper, the type BB system displays a crossover from relaxational behavior at low energies to type AA behavior at high energies. A scaling hypothesis is proposed to describe this crossover: we postulate a universal scaling function which determines the entire, temperature-, wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in terms of 4 measurable, T=0T=0, parameters (determining the distance, energy, and order parameter scales, plus one crossover parameter). The scaling function contains the full scaling behavior in all regimes for both type AA and BB systems. The crossover behavior of the uniform susceptibility and the specific heat is somewhat more complicated and is also discussed. Explicit computation of the crossover functions is carried out in a large NN expansion on a mean-field model. Some new results for the critical properties on the ordered side of the transition are also obtained in a spin-density wave formalism. The possible relevance of our results to the doped cuprate compounds is briefly discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for figures is appended

    Surveying Standard Model Flux Vacua on T6/Z2×Z2T^6/Z_2\times Z_2

    Full text link
    We consider the SU(2)LxSU(2)R Standard Model brane embedding in an orientifold of T6/Z2xZ2. Within defined limits, we construct all such Standard Model brane embeddings and determine the relative number of flux vacua for each construction. Supersymmetry preserving brane recombination in the hidden sector enables us to identify many solutions with high flux. We discuss in detail the phenomenology of one model which is likely to dominate the counting of vacua. While Kahler moduli stabilization remains to be fully understood, we define the criteria necessary for generic constructions to have fixed moduli.Comment: 30 pages, LaTeX, v2: added reference

    tbWt \to b W in NonCommutative Standard Model

    Full text link
    We study the top quark decay to b quark and W boson in the NonCommutative Standard Model (NCSM). The lowest contribution to the decay comes from the terms quadratic in the matrix describing the noncommutative (NC) effects while the linear term is seen to identically vanish because of symmetry. The NC effects are found to be significant only for low values of the NC characteristic scale.Comment: 11 page Latex file containing 2 eps figures (redrawn). More discussion included. To appear in PR

    Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis

    Get PDF
    BACKGROUND: A polymorphism (rs35705950) 3 kb upstream of MUC5B, the gene encoding Mucin 5 subtype B, has been shown to be associated with familial and sporadic idiopathic pulmonary fibrosis (IPF). We set out to verify whether this variant is also a risk factor for fibrotic lung disease in other settings and to confirm the published findings in a UK Caucasian IPF population. METHODS: Caucasian UK healthy controls (n=416) and patients with IPF (n=110), sarcoidosis (n=180) and systemic sclerosis (SSc) (n=440) were genotyped to test for association. The SSc and sarcoidosis cohorts were subdivided according to the presence or absence of fibrotic lung disease. To assess correlation with disease progression, time to decline in forced vital capacity and/or lung carbon monoxide transfer factor was used in the IPF and SSc groups, while a persistent decline at 4 years since baseline was evaluated in patients with sarcoidosis. RESULTS: A significant association of the MUC5B promoter single nucleotide polymorphism with IPF (p=2.04 x 10(-17); OR 4.90, 95% CI 3.42 to 7.03) was confirmed in this UK population. The MUC5B variant was not a risk factor for lung fibrosis in patients with SSc or sarcoidosis and did not predict more rapidly progressive lung disease in any of the groups. Rather, a trend for a longer time to decline in forced vital capacity was observed in patients with IPF. CONCLUSIONS: We confirm the MUC5B variant association with IPF. We did not observe an association with lung fibrosis in the context of SSc or sarcoidosis, potentially highlighting fundamental differences in genetic susceptibility, although the limited subgroup numbers do not allow a definitive exclusion of an association

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan
    corecore