373 research outputs found

    Controlling TcT_c of Iridium films using interfacial proximity effects

    Full text link
    High precision calorimetry using superconducting transition edge sensors requires the use of superconducting films with a suitable TcT_c, depending on the application. To advance high-precision macrocalorimetry, we require low-TcT_c films that are easy to fabricate. A simple and effective way to suppress TcT_c of superconducting Iridium through the proximity effect is demonstrated by using Ir/Pt bilayers as well as Au/Ir/Au trilayers. While Ir/Au films fabricated by applying heat to the substrate during Ir deposition have been used in the past for superconducting sensors, we present results of TcT_c suppression on Iridium by deposition at room temperature in Au/Ir/Au trilayers and Ir/Pt bilayers in the range of ∼\sim20-100~mK. Measurements of the relative impedance between the Ir/Pt bilayers and Au/Ir/Au trilayers fabricated show factor of ∼\sim10 higher values in the Ir/Pt case. These new films could play a key role in the development of scalable superconducting transition edge sensors that require low-TcT_c films to minimize heat capacity and maximize energy resolution, while keeping high-yield fabrication methods.Comment: 5 journal pages, 4 figure

    CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Get PDF
    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.Comment: 7 pages, 4 figure

    Controlling TcT_c of Iridium Films Using the Proximity Effect

    Full text link
    A superconducting Transition-Edge Sensor (TES) with low-TcT_c is essential in a high resolution calorimetric detection. With a motivation of developing sensitive calorimeters for applications in cryogenic neutrinoless double beta decay searches, we have been investigating methods to reduce the TcT_c of an Ir film down to 20 mK. Utilizing the proximity effect between a superconductor and a normal metal, we found two room temperature fabrication recipes of making Ir-based low-TcT_c films. In the first approach, an Ir film sandwiched between two Au films, a Au/Ir/Au trilayer, has a tunable TcT_c in the range of 20-100 mK depending on the relative thicknesses. In the second approach, a paramagnetic Pt thin film is used to create Ir/Pt bilayer with a tunable TcT_c in the same range. We present detailed study of fabrication and characterization of Ir-based low-TcT_c films, and compare the experimental results to theoretical models. We show that Ir-based films with predictable and reproducible critical temperature can be consistently fabricated for use in large scale detector applications.Comment: 5 figures, accepted in the Journal of Applied Physic

    Results from the Super Cryogenic Dark Matter Search (SuperCDMS) experiment at Soudan

    Get PDF
    We report the result of a blinded search for Weakly Interacting Massive Particles (WIMPs) using the majority of the SuperCDMS Soudan dataset. With an exposure of 1690 kg days, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP--nucleon cross section of 1.4×10−441.4 \times 10^{-44} (1.0×10−441.0 \times 10^{-44}) cm2^2 at 46 GeV/c2c^2. These results set the strongest limits for WIMP--germanium-nucleus interactions for masses >>12 GeV/c2c^2

    Immunogenicity and Protective Capacity of a Virosomal Respiratory Syncytial Virus Vaccine Adjuvanted with Monophosphoryl Lipid A in Mice

    Get PDF
    Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation

    Detector Fabrication Yield for SuperCDMS Soudan

    Get PDF
    The SuperCDMS collaboration is presently operating a 9 kg Ge payload at the Soudan Underground Laboratory in their direct search for dark matter. The Ge detectors utilize double-sided athermal phonon sensors with an interdigitated electrode structure (iZIPs) to reject near-surface electron-recoil events. These detectors each have a mass of 0.6 kg and were fabricated with photolithographic techniques. The detector fabrication advances required and the production yield encountered are described.United States. Dept. of EnergyNational Science Foundation (U.S.

    Post-exposure prophylaxis during pandemic outbreaks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the rise of the second pandemic wave of the novel influenza A (H1N1) virus in the current season in the Northern Hemisphere, pandemic plans are being carefully re-evaluated, particularly for the strategic use of antiviral drugs. The recent emergence of oseltamivir-resistant in treated H1N1 patients has raised concerns about the prudent use of neuraminidase inhibitors for both treatment of ill individuals and post-exposure prophylaxis of close contacts.</p> <p>Methods</p> <p>We extended an established population dynamical model of pandemic influenza with treatment to include post-exposure prophylaxis of close contacts. Using parameter estimates published in the literature, we simulated the model to evaluate the combined effect of treatment and prophylaxis in minimizing morbidity and mortality of pandemic infections in the context of transmissible drug resistance.</p> <p>Results</p> <p>We demonstrated that, when transmissible resistant strains are present, post-exposure prophylaxis can promote the spread of resistance, especially when combined with aggressive treatment. For a given treatment level, there is an optimal coverage of prophylaxis that minimizes the total number of infections (final size) and this coverage decreases as a higher proportion of infected individuals are treated. We found that, when treatment is maintained at intermediate levels, limited post-exposure prophylaxis provides an optimal strategy for reducing the final size of the pandemic while minimizing the total number of deaths. We tested our results by performing a sensitivity analysis over a range of key model parameters and observed that the incidence of infection depends strongly on the transmission fitness of resistant strains.</p> <p>Conclusion</p> <p>Our findings suggest that, in the presence of transmissible drug resistance, strategies that prioritize the treatment of only ill individuals, rather than the prophylaxis of those suspected of being exposed, are most effective in reducing the morbidity and mortality of the pandemic. The impact of post-exposure prophylaxis depends critically on the treatment level and the transmissibility of resistant strains and, therefore, enhanced surveillance and clinical monitoring for resistant mutants constitutes a key component of any comprehensive plan for antiviral drug use during an influenza pandemic.</p
    • …
    corecore