382 research outputs found

    Convective infux/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways

    Get PDF
    Tracers injected into CSF pass into the brain alongside arteries and out again. This has been recently termed the "glymphatic system" that proposes tracers enter the brain along periarterial "spaces" and leave the brain along the walls of veins. The object of the present study is to test the hypothesis that: (1) tracers from the CSF enter the cerebral cortex along pial-glial basement membranes as there are no perivascular "spaces" around cortical arteries, (2) tracers leave the brain along smooth muscle cell basement membranes that form the Intramural Peri-Arterial Drainage (IPAD) pathways for the elimination of interstitial fluid and solutes from the brain. 2 μL of 100 μM soluble, fluorescent fixable amyloid β (Aβ) were injected into the CSF of the cisterna magna of 6-10 and 24-30 month-old male mice and their brains were examined 5 and 30 min later. At 5 min, immunocytochemistry and confocal microscopy revealed Aβ on the outer aspects of cortical arteries colocalized with α-2 laminin in the pial-glial basement membranes. At 30 min, Aβ was colocalised with collagen IV in smooth muscle cell basement membranes in the walls of cortical arteries corresponding to the IPAD pathways. No evidence for drainage along the walls of veins was found. Measurements of the depth of penetration of tracer were taken from 11 regions of the brain. Maximum depths of penetration of tracer into the brain were achieved in the pons and caudoputamen. Conclusions drawn from the present study are that tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. The exit route is along IPAD pathways in which Aβ accumulates in cerebral amyloid angiopathy (CAA) in Alzheimer's disease. Results from this study suggest that CSF may be a suitable route for delivery of therapies for neurological diseases, including CAA

    Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease

    Get PDF
    Amyloid is deposited in the walls of arteries and capillaries as cerebral amyloid angiopathy (CAA) in the brains of older individuals and of those with Alzheimer disease (AD). CAA in AD reflects an age-related failure of elimination of amyloid-beta (Aβ) from the brain along perivascular lymphatic drainage pathways. In the absence of conventional lymphatic vessel in the brain, interstitial fluid and solutes drain from the brain to cervical lymph nodes along narrow basement membranes in the walls of capillaries and arteries, a pathway that is largely separate from the cerebrospinal fluid. In this review we focus on the pathology and pathogenesis of CAA, its role in the aetiology of AD and its impact on immunotherapy for AD. The motive force for lymphatic drainage of the brain appears to be generated by arterial pulsations. Failure of elimination of Aβ along perivascular pathways coincides with a reduction in enzymic degradation of Aβ, reduced absorption of Aβ into the blood and age-related stiffening of artery walls that appears to reduce the motive force for lymphatic drainage. Reduced clearances of Aβ and CAA are associated with the accumulation of insoluble and soluble Aβs in the brain in AD and the probable loss of homeostasis of the neuronal environment due to retention of soluble metabolites within the brain. Tau metabolism may also be affected. Immunotherapy has been successful in removing insoluble plaques of Aβ from the brain in AD but with little effect on cognitive decline. One major problem is the increase in CAA in immunised patients that probably prevents the complete removal of Aβ from the brain. Increased knowledge of the physiology and structural and genetic aspects of the lymphatic drainage of Aβ from the brain will stimulate the development of therapeutic strategies for the prevention and treatment of AD

    Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain

    Get PDF
    The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer\u27s disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA

    A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain

    Get PDF
    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy

    Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases

    No full text
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain

    Get PDF
    The human brain is the organ with the highest metabolic activity but it lacks a traditional lymphatic system responsible for clearing waste products. We have demonstrated that the basement membranes of cerebral capillaries and arteries represent the lymphatic pathways of the brain along which intramural periarterial drainage (IPAD) of soluble metabolites occurs. Failure of IPAD could explain the vascular deposition of the amyloid-beta protein as cerebral amyloid angiopathy (CAA), which is a key pathological feature of Alzheimer's disease. The underlying mechanisms of IPAD, including its motive force, have not been clarified, delaying successful therapies for CAA. Although arterial pulsations from the heart were initially considered to be the motive force for IPAD, they are not strong enough for efficient IPAD. This study aims to unravel the driving force for IPAD, by shifting the perspective of a heart-driven clearance of soluble metabolites from the brain to an intrinsic mechanism of cerebral arteries (e.g., vasomotion-driven IPAD). We test the hypothesis that the cerebrovascular smooth muscle cells, whose cycles of contraction and relaxation generate vasomotion, are the drivers of IPAD. A novel multiscale model of arteries, in which we treat the basement membrane as a fluid-filled poroelastic medium deformed by the contractile cerebrovascular smooth muscle cells, is used to test the hypothesis. The vasomotion-induced intramural flow rates suggest that vasomotion-driven IPAD is the only mechanism postulated to date capable of explaining the available experimental observations. The cerebrovascular smooth muscle cells could represent valuable drug targets for prevention and early interventions in CAA

    Quantification of molecular interactions between apoE, Amyloid-beta (Aβ) and laminin:relevance to accumulation of Aβ in Alzheimer’s disease

    Get PDF
    Accumulation of amyloid-? (A?) in plaques in the brain and in artery walls as cerebral amyloid angiopathy indicates a failure of elimination of A? from the brain with age and Alzheimer's disease. A major pathway for elimination of A? and other soluble metabolites from the brain is along basement membranes within the walls of cerebral arteries that represent the lymphatic drainage pathways for the brain. The motive force for the elimination of A? along this perivascular pathway appears to be the contrary (reflection) wave that follows the arterial pulse wave. Following injection into brain parenchyma, A? rapidly drains out of the brain along basement membranes in the walls of cerebral arteries; such drainage is impaired in apolipoprotein E ?4 (ApoE4) mice. For drainage of A? to occur in a direction contrary to the pulse wave, some form of attachment to basement membrane would be required to prevent reflux of A? back into the brain during the passage of the subsequent pulse wave. In this study, we show first that apolipoprotein E co-localizes with A? in basement membrane drainage pathways in the walls of arteries. Secondly, we show by Atomic Force Microscopy that attachment of ApoE4/A? complexes to basement membrane laminin is significantly weaker than ApoE3/A? complexes. These results suggest that perivascular elimination of ApoE4/A? complexes would be less efficient than with other isoforms of apolipoprotein E, thus endowing a higher risk for Alzheimer's disease. Therapeutic correction for ApoE4/A?/laminin interactions may increase the efficiency of elimination of A? in the prevention of Alzheimer's disease

    Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review.

    Get PDF
    BACKGROUND: Deposition of amyloid-beta (Abeta) in vessel walls of the brain as cerebral amyloid angiopathy (CAA) could be a major factor in the pathogenesis of dementia. Here we investigate the relationship between dementia and the prevalence of CAA in older populations. We searched the literature for prospective population-based epidemiological clinicopathological studies, free of the biases of other sampling techniques, which were used as a comparison. METHODS: To identify population-based studies assessing CAA and dementia, a previous systematic review of population-based clinicopathological studies of ageing and dementia was employed. To identify selected-sample studies, PsychInfo (1806-April Week 3 2008), OVID MEDLINE (1950-April Week 2 2008) and Pubmed (searched 21 April 2008) databases were searched using the term "amyloid angiopathy". These databases were also employed to search for any population-based studies not included in the previous systematic review. Studies were included if they reported the prevalence of CAA relative to a dementia classification (clinical or neuropathological). RESULTS: Four population-based studies were identified. They showed that on average 55-59% of those with dementia displayed CAA (of any severity) compared to 28-38% of the non-demented. 37-43% of the demented displayed severe CAA in contrast to 7-24% of the non-demented. There was no overlap in the range of these averages and they were less variable and lower than those reported in 38 selected sample studies (demented v non-demented: 32-100 v 0-77% regardless of severity; 0-50 v 0-11% for severe only). CONCLUSION: CAA prevalence in populations is consistently higher in the demented as compared to the non-demented. This supports a significant role for CAA in the pathogenesis of dementia

    Amyloid and tau in the brain in sporadic Alzheimer's disease: defining the chicken and the egg

    Get PDF
    In the October 2013 issue of Acta Neuropathologica there were three very interesting articles on: Amyloid or tau: the chicken or the egg? In the first article, David Mann and John Hardy argued that the deposition of aggregated amyloid β (Aβ) protein in the brain is a primary driving force behind the pathogenesis of Alzheimer’s disease with tau pathology following as a consequential or at least a secondary event. In the communication that followed, Braak and Del Tredici presented the contrary argument with accumulation of tau protein as the primary event in sporadic Alzheimer’s disease. Attems and Jellinger questioned the concept of a chicken and egg and suggested that the majority of cases of age-associated dementia are not caused by one single primary pathological mechanism
    • …
    corecore