175 research outputs found

    The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging

    Get PDF
    BACKGROUND: The Gag protein of Mason-Pfizer monkey virus, a betaretrovirus, contains a phosphoprotein that is cleaved into the Np24 protein and the phosphoprotein pp16/18 during virus maturation. Previous studies by Yasuda and Hunter (J. Virology. 1998. 72:4095–4103) have demonstrated that pp16/18 contains a viral late domain required for budding and that the Np24 protein plays a role during the virus life cycle since deletion of this N-terminal domain blocked virus replication. The function of the Np24 domain, however, is not known. RESULTS: Here we identify a region of basic residues (KKPKR) within the Np24 domain that is highly conserved among the phosphoproteins of various betaretroviruses. We show that this KKPKR motif is required for virus replication yet dispensable for procapsid assembly, membrane targeting, budding and release, particle maturation, or viral glycoprotein packaging. Additional experiments indicated that deletion of this motif reduced viral RNA packaging 6–8 fold and affected the transient association of Gag with nuclear pores. CONCLUSION: These results demonstrate that the Np24 domain plays an important role in RNA packaging and is in agreement with evidence that suggests that correct intracellular targeting of Gag to the nuclear compartment is an fundamental step in the retroviral life cycle

    Human Ubc9 Contributes to Production of Fully Infectious Human Immunodeficiency Virus Type 1 Virions

    Get PDF
    Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions

    Damping rates for moving particles in hot QCD

    Full text link
    Using a program of perturbative resummation I compute the damping rates for fields at nonzero spatial momentum to leading order in weak coupling in hot QCDQCD. Sum rules for spectral densities are used to simplify the calculations. For massless fields the damping rate has an apparent logarithmic divergence in the infrared limit, which is cut off by the screening of static magnetic fields (``magnetic mass''). This demonstrates how at high temperature even perturbative quantities are sensitive to nonperturbative phenomenon.Comment: LaTeX file, 24 pages, BNL-P-1/92 (December, 1992

    Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle

    Full text link
    We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling

    Wildlife Trade and Global Disease Emergence

    Get PDF
    The global trade in wildlife provides disease transmission mechanisms that not only cause human disease outbreaks but also threaten livestock, international trade, rural livelihoods, native wildlife populations, and the health of ecosystems. Outbreaks resulting from wildlife trade have caused hundreds of billions of dollars of economic damage globally. Rather than attempting to eradicate pathogens or the wild species that may harbor them, a practical approach would include decreasing the contact rate among species, including humans, at the interface created by the wildlife trade. Since wildlife marketing functions as a system of scale-free networks with major hubs, these points provide control opportunities to maximize the effects of regulatory efforts
    corecore