17 research outputs found

    Elective Recital: Annie Barrett, mezzo soprano and Sarah Welden, soprano

    Get PDF

    Particulate matter pollution in an informal settlement in Nairobi : using citizen science to make the invisible visible

    Get PDF
    We used a citizen science approach to explore personal exposure to air pollution of selected informal settlement dwellers in Nairobi, Kenya. This paper presents the methods used, with the aim of informing others who wish to conduct similar work in the future, and some results, including policy impact. We used three interlinked methods: 1) a personal mobile exposure monitoring campaign in which individual workers used Dylos monitors to measure variations in their exposure to fine particulate matter (PM2.5) within the settlement over the course of a day, 2) a questionnaire conducted before and after the monitoring campaign to assess any changes in knowledge or attitude in the wider community, and 3) two workshops, which facilitated the citizen science approach and brought together members of the community, local policy makers and researchers. The three elements of the study provided the local community, policymakers and scientists with new insights into the challenges air pollution poses for human health in such settlements, and opportunities for exploring how to monitor, mitigate and avoid these pollutants using a citizen science approach. We found significant differences in PM2.5 exposure between individual workers that could be partially explained by spatial differences in concentration that we identified within the settlement. Residents of the informal settlement identified a number of sources that might explain these differences in concentration, although many residents perceived air quality to be good both indoors and outdoors. The workshops raised awareness of the issue of air pollution and brought together affected community members and local and national policy makers to discuss air pollution issues in Nairobi's informal settlements. As a result, a new knowledge exchange network, the Kenya Air Quality Network, of policy-makers, researchers and community members was formed with the aim to facilitate the improvement of air quality across Kenya

    S.I.Lex, le blog revisité

    Get PDF
    Très fourni, avec plus de 600 billets denses et documentés, ce blog méritait de disposer de passeurs prêts à partager leurs parcours de lecture, depuis 10 ans, pour rendre visibles les éclats d’une pensée investie et engagée dans la défense des droits numériques des usagers. Ce sont près de 15 très fins connaisseurs du blog qui présentent « leur » S.I.Lex à travers une sélection de billets éditorialisés : une manière de faire circuler autrement les analyses de Lionel Maurel notamment dans le domaine des bibliothèques numériques, des modèles économiques et des biens communs

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    T84 monolayers are superior to Caco-2 as a model system of colonocytes

    No full text
    Colonic adenocarcinoma-derived Caco-2 and T84 epithelial cell lines are frequently used as in vitro model systems of functional epithelial barriers. Both are utilised interchangeably despite evidence that differentiated Caco-2 cells are more reminiscent of small intestinal enterocytes than of colonocytes, whereas differentiated T84 cells are less well characterised. The aim of this study was, therefore, to further characterise and compare differentiated Caco-2 and T84 cells. The objectives were to (1) compare the brush border morphology, (2) measure the expression of enterocyte- and colonocyte-specific genes and (3) compare their response to butyrate, which is dependent on the monocarboxylate transporter 1 (MCT1), an apical protein expressed primarily in colonocytes. T84 microvilli were significantly shorter than those of Caco-2 cells, which is a characteristic difference between small intestinal enterocytes and colonocytes. Also, enterocyte-associated brush border enzymes expressed in differentiated Caco-2 cells were not increased during T84 maturation, whereas colonic markers such as MCT1 were more abundant in differentiated T84 cells compared to differentiated Caco-2 cells. Consequently, T84 cells displayed a dose-responsive improvement of barrier function towards butyrate, which was absent in Caco-2 cells. On the other hand, differences in epithelial toll-like receptor expression between Caco-2 and T84 monolayers did not result in a corresponding differential functional response. We conclude that differentiated Caco-2 and T84 cells have distinct morphological, biochemical and functional characteristics, suggesting that T84 cells do not acquire the biochemical signature of mature small intestinal enterocytes like Caco-2 cells, but retain much of their original colonic characteristics throughout differentiation. These findings can help investigators select the appropriate intestinal epithelial cell line for specific in vitro research purposes

    Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn’s disease-like ileitis

    No full text
    Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter a and (3 was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)alpha, in ileal tissue of TNF Delta ARE/WT mice and in inflamed ilea) biopsies from CD patients by quantitative real-time polymerase chain reaction. TNF Delta ARE/WT mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFa impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNF Delta ARE/WT mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial

    Ursodeoxycholic acid and its taurine/glycine conjugated species reduce colitogenic dysbiosis and equally suppress experimental colitis in mice

    Get PDF
    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease

    Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local Rho kinase inhibitor

    No full text
    BACKGROUND: Intestinal fibrosis resulting in (sub) obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFb-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS: Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS: ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFb1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS: Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD
    corecore