456 research outputs found

    Clinical yarning with Aboriginal and/or Torres Strait Islander peoples-a systematic scoping review of its use and impacts.

    Full text link
    OBJECTIVES: To explore how clinical yarning has been utilised as a health intervention for Aboriginal and/or Torres Strait Islander peoples and if there are any reported impacts yarning might have on health outcomes. STUDY DESIGN: Systematic scoping review of published literature. DATA SOURCES: A one-word search term "yarning" was applied in Scopus, EMBASE, CINAHL, MEDLINE, International Pharmaceutical Abstracts, Australian Public Affairs Information Service-Health, and the Aboriginal and/or Torres Strait Islander Health Bibliography databases. Databases were searched from inception to May 20, 2020. STUDY SELECTION: Studies were included where clinical yarning had been used as a health intervention. Inclusion and exclusion criteria were developed and applied according to PRISMA systematic and scoping review reporting methods. DATA SYNTHESIS: A total of 375 manuscripts were found from the initial data search. After removal of duplicates and removal of manuscripts based on abstract review, a total of 61 studies underwent full-text review. Of these, only five met the inclusion criteria of utilising yarning as a clinical intervention. Four of these studies described consumer self-reported health outcomes, with only one study looking at improvements in objective physiological health outcomes. CONCLUSIONS: Whilst clinical yarning may be a culturally appropriate intervention in healthcare, there are limited studies that have measured the impact of this intervention. Further research may be needed to ascertain the true benefits of this intervention

    Spine system equivalence: A new protocol for standardized multi-axis comparison tests

    Get PDF
    This is the final version of the paper.Accurately replicating the in-vivo loads of the spine is a critical aspect of in-vitro spine testing, but the complexity of this structure renders this challenging. The design and control capabilities of multi-axis spine systems vary considerably, and though recommendations have been made [1, 2], standardized in-vitro methods have not yet been established. As such, it is often difficult to compare different biomechanical studies [3]. The aim of this study was to use international standards [4, 5], and spine testing recommendations [1-3] to develop a standardized protocol for the evaluation of different multi-axis spinal test systems. The protocol was implemented on three six-axis spine systems, and the data used to establish stiffness and phase angle limits. [...]This research was supported by the Catherine Sharpe Foundation, the Enid Linder Foundation, the Higher Education Innovation Fund, and the University of Bath Alumni Fund

    The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol

    Get PDF
    Author's accepted manuscriptFinal version available from Elsevier via the DOI in this recordThe complexity of multi-axis spine testing often makes it challenging to compare results from different studies. The aim of this work was to develop and implement a standardized testing protocol across three six-axis spine systems, compare them, and provide stiffness and phase angle limits against which other test systems can be compared. Standardized synthetic lumbar specimens (n = 5), comprising three springs embedded in polymer at each end, were tested on each system using pure moments in flexion–extension, lateral bending, and axial rotation. Tests were performed using sine and triangle waves with an amplitude of 8 Nm, a frequency of 0.1 Hz, and with axial preloads of 0 and 500 N. The stiffness, phase angle, and R2 value of the moment against rotation in the principal axis were calculated at the center of each specimen. The tracking error was adopted as a measure of each test system to minimize non-principal loads, defined as the root mean squared difference between actual and target loads. All three test systems demonstrated similar stiffnesses, with small (<14%) but significant differences in 4 of 12 tests. More variability was observed in the phase angle between the principal axis moment and rotation, with significant differences in 10 of 12 tests. Stiffness and phase angle limits were calculated based on the 95% confidence intervals from all three systems. These recommendations can be used with the standard specimen and testing protocol by other research institutions to ensure equivalence of different spine systems, increasing the ability to compare in vitro spine studies.This research was completed with the support of the Catherine Sharpe Foundation, the Enid Linder Foundation, and the University of Bath Alumni Fun

    The symbiosis of concurrency and verification: teaching and case studies

    Get PDF
    Concurrency is beginning to be accepted as a core knowledge area in the undergraduate CS curriculum—no longer isolated, for example, as a support mechanism in a module on operating systems or reserved as an advanced discipline for later study. Formal verification of system properties is often considered a difficult subject area, requiring significant mathematical knowledge and generally restricted to smaller systems employing sequential logic only. This paper presents materials, methods and experiences of teaching concurrency and verification as a unified subject, as early as possible in the curriculum, so that they become fundamental elements of our software engineering tool kit—to be used together every day as a matter of course. Concurrency and verification should live in symbiosis. Verification is essential for concurrent systems as testing becomes especially inadequate in the face of complex non-deterministic (and, therefore, hard to repeat) behaviours. Concurrency should simplify the expression of most scales and forms of computer system by reflecting the concurrency of the worlds in which they operate (and, therefore, have to model); simplified expression leads to simplified reasoning and, hence, verification. Our approach lets these skills be developed without requiring students to be trained in the underlying formal mathematics. Instead, we build on the work of those who have engineered that necessary mathematics into the concurrency models we use (CSP, ?-calculus), the model checker (FDR) that lets us explore and verify those systems, and the programming languages/libraries (occam-?, Go, JCSP, ProcessJ) that let us design and build efficient executable systems within these models. This paper introduces a workflow methodology for the development and verification of concurrent systems; it also presents and reflects on two open-ended case studies, using this workflow, developed at the authors’ two universities. Concerns analysed include safety (don’t do bad things), liveness (do good things) and low probability deadlock (that testing fails to discover). The necessary technical background is given to make this paper self-contained and its work simple to reproduce and extend

    Estimating the mean and variance from the median, range, and the size of a sample

    Get PDF
    BACKGROUND: Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial. METHODS: In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data. RESULTS: We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n ≤ 15). For moderately sized samples (15 <n ≤ 70), our simulations show that the formula range/4 is the best estimator for the standard deviation (variance). For large samples (n > 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy. CONCLUSION: Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported

    Influence of inspiratory resistive loading on expiratory muscle fatigue in healthy humans

    Get PDF
    Expiratory resistive loading elicits inspiratory as well as expiratory muscle fatigue, suggesting parallel co-activation of the inspiratory muscles during expiration. It is unknown whether the expiratorymuscles are similarly co-activated to the point of fatigue during inspiratory resistive loading (IRL).The purpose of this study was to determine whether IRL elicits expiratory as well as inspiratory muscle fatigue. Healthy male subjects (n=9) underwent isocapnic IRL (60% maximal inspiratory pressure, 15 breaths∙min-1, 0.7 inspiratory duty cycle) to task failure. Abdominal and diaphragm contractile function was assessed at baseline and at 3, 15 and 30 min post-IRL by measuring gastric twitch pressure (Pga,tw) and transdiaphragmatic twitch pressure (Pdi,tw) in response to potentiated magnetic stimulation of the thoracic and phrenic nerves, respectively. Fatigue was defined as a significant reduction from baseline in Pga,tw or Pdi,tw. Throughout IRL, there was a time-dependent increase in cardiac frequency and mean arterial blood pressure, suggesting activation of the respiratory muscle metaboreflex. Pdi,tw was significantly lower than baseline (34.3 9.6 cmH2O) at 3min (23.2 5.7 cmH2O, P<0.001), 15 min (24.2 5.1 cmH2O, P<0.001) and 30 min post-IRL (26.3 6.0 cmH2O, P<0.001). Pga,tw was not significantly different from baseline (37.6 17.1 cmH2O) at 3min (36.5 14.6 cmH2O), 15 min (33.7 12.4 cmH2O) and 30 min post-IRL (32.9 11.3 cmH2O). IRL elicits objective evidence of diaphragm, but not abdominal, muscle fatigue. Agonist-antagonist interactions for the respiratory muscles appear to be more important during expiratory versus inspiratory loading.The Natural Sciences and Engineering Research Council (NSERC) of Canada supported this study. C.M. Peters, P.B. Dominelli, and Y. Molgat-Seon were supported by NSERC postgraduate scholarships. J.F Welch was supported by a University of British Columbia graduate fellowship

    [89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography

    Get PDF
    Purpose 111In (typically as [111In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an 89Zr PET tracer for cell labelling and compare it with [111In]oxinate3 single photon emission computed tomography (SPECT). Methods [89Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [89Zr]oxinate4 or [111In]oxinate3 was monitored for up to 14 days. 89Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Results Zr labelling was effective in all cell types with yields comparable with 111In labelling. Retention of 89Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than 111In (43–52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with 111In or 89Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for 111In. In liver, spleen and bone marrow at least 92 % of 89Zr remained associated with eGFP-positive cells after 7 days in vivo. Conclusion [89Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types

    Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications

    Get PDF
    The earth-abundant material CuSbS2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa(1–x)Se2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies
    • …
    corecore