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ABSTRACT 

The earth-abundant material CuSbS2 (CAS) has shown good optical properties as a photovoltaic 

solar absorber material, but has seen relatively poor solar cell performance. To investigate the 

reason for this anomaly, the core-levels of the constituent elements, surface contaminants, 

ionization potential, and valence band spectra are studied by x-ray photoemission spectroscopy 

(XPS). The ionization potential and electron affinity for this material (4.98 eV and 3.43 eV) are 

lower than for other common absorbers, including CuInxGa(1-x)Se2 (CIGS). Experimentally 

corroborated density functional theory (DFT) calculations show that the VBM is raised by the 

lone pair electrons from the antimony cations contributing additional states when compared with 

indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a 

reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the 

idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical 

importance of considering the electronic structure when selecting cell architectures that optimize 

open-circuit voltages and cell efficiencies. 
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INTRODUCTION 

The drive to discover and develop materials for use in terawatt-scale thin film photovoltaics 

(PV) has grown somewhat in recent years, due to the necessity of eliminating environmentally 

harmful or economically unfeasible elemental components from their production, as is the case 

with the current market leaders, cadmium telluride (CdTe) or copper indium gallium diselenide 

(CIGS)1–4. One attractive family of materials for this purpose is the ternary copper 

chalcogenides, taking the general form CumMnChx (M = Sb, Bi; Ch = S, Se), developed as 

analogues to CIGS, replacing trivalent In and Ga with Sb or Bi1,5,6. 

Here, the compound CuSbS2 (CAS) is of interest, which has previously demonstrated 

appealing photovoltaic properties7. With scarcity and world demand for antimony being 

significantly lower than for indium6, as well as having almost equivalent ionic radii8, this metal 

could prove a good substitute, both economically and in terms of PV properties. Long known as 

the naturally occurring mineral chalcostibite, its potential as a solar absorber was only realized in 

20015, with the first cell being constructed in 20059. Since then, it has demonstrated a solar-

matched band gap of ~1.5 eV5,10,11, inherent p-type conductivity due to the dominant copper 

vacancy5,12,13, and absorption stronger than both CIGS and copper zinc tin sulfide (CZTS)7, 

which is another popular earth-abundant absorber. CAS has a relatively low melting point of 

~540°C2,13, and so is amenable to crystallization at lower temperatures. CAS has thus far been 

successfully grown in thin film and nanoscale form by many and varied deposition methods, 

both physical (thermal evaporation2,14,15 and sputtering3,4,16) and chemical (spray pyrolysis12,17, 

chemical bath5,9,10,18, spin coating13, electrodeposition11,14, solution processing19 and solvo-

/hydro-thermal20–22), leading to continued interest in the material. Beyond its use as a solar 

absorber, interest is also maintained in CAS because of its potential use in other areas of 
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semiconductor applications, such as supercapacitors23, dye-sensitized solar cells24, or electrodes 

in batteries25. 

Despite this, solar cell performance thus far has been severely limited and the shortcomings of 

the literature reports on device properties have been previously ackowledged3. There have been 

very few reports of fully built PV devices and those that do exist commonly report no8,9,18, or 

very low (<2%)2,4,13,15 efficiencies. The efficiency record currently stands at only 3.22%26, with 

another study reporting a near-record efficiency of 3.13%11. Despite over a decade of research, 

recent reports still acknowledge that further investigation into device fabrication and 

characterization is required7,15. This is especially the case, given that these record efficiency 

devices utilize similar architectures, which all involve the use of problematic CdS. 

Although antimony takes the trivalent oxidation state in CAS, like Ga/In does in CIGS, CAS 

does not form in the tetrahedral chalcopyrite crystal structure like CIGS27. Instead, CAS forms in 

a structure (shown in Figure 1 and generated from x-ray diffraction data28) that is somewhat 

distorted by the stereochemically active antimony lone pair electrons, which do not take part in 

bonding29. The copper atoms are 4-fold coordinated to sulfur in almost regular tetrahedra, 

whereas the antimony atoms are 5-fold coordinated to sulfur in a distorted square-based pyramid 

arrangement. The lone pair electron density is then directed into the void between the SbS5 

pyramid units30. With two Sb-S bonds being much longer than the other three28 (shown as grey 

in Figure 1), the crystal structure is said to be layered through the plane intersecting these bonds4. 

Consequently, there are two inequivalent sulfur sites, one which is coordinated to two Cu and 

three Sb atoms, and the other which is coordinated to two Cu and two Sb atoms1 (labelled S1 and 

S2 in Figure 1, respectively). This crystallography, which is very dissimilar from that of CIGS or 
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CZTS3, leads to differences in the characteristic properties and electronic structures, which are 

thought to be the cause of the poor device performances. 

 

Figure 1. Crystal structure of chalcostibite CuSbS2, showing the individual atoms of Cu 

(orange), Sb (purple) and S (yellow). The inequivalent sulfur coordination sites are marked. 

This article presents a full x-ray photoemission spectroscopy (XPS) analysis of CuSbS2, 

including core-levels, valence band spectra, band edge positions, and the effects of surface 

cleaning and contamination. Complexities in the spectra can mask the surface contamination, the 

effects of which are important to recognize because they can impact the electronic properties. 

The valence band findings are corroborated with theoretical density of states calculations to 

explain how the bonding nature of the material affects the position of the VBM. This gives rise 

to a low ionization potential, which is partly responsible for the poor efficiencies seen in CuSbS2 

solar cells, due to poor conduction band alignment with the commonly used window layer, CdS. 

 

METHODS 

Experimental Section. Films of phase-pure polycrystalline CuSbS2 (~1.5 µm thickness) were 

synthesized by co-sputtering from Sb2S3 and Cu2S targets on bare and Mo-coated soda lime glass 
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substrates heated to 350oC16. To improve the quality of the CuSbS2 material, some of the 

resulting thin films were annealed at 455°C for 11 hours in a tube furnace under flow of N2 in the 

presence of sacrificial Sb2S3 powder3. The annealing was preceded by a 100°C water vapor 

removal step for 30 minutes and a 60 minute heating step; it was followed by a 5 hour cooling 

step down to room temperature. The results for the annealed CuSbS2 thin films are presented 

below, whereas the results for the as-deposited films are provided in the Supporting Information. 

More details about the synthesis16 and annealing3 of the same CuSbS2 thin films have been 

previously reported. 

Raman spectra were acquired using a Horiba Scientific Jobin-Yvon LabRam HR confocal 

Raman microscope. This consisted of a confocal microscope coupled to a single grating 

spectrometer, equipped with a longpass filter and a CCD detector. Spectra were measured using 

an incident wavelength of 514.5 nm from an argon ion laser with a CCD exposure time of 30 s 

and 5 acquisitions. Before measurements, the spectrometer was calibrated to the zero order and 

the 520 cm-1 Raman line of silicon. 

Optical transmission and specular reflection spectra were recorded at 4 and 300 K and for 

photon energies of 0.3 to 2.4 eV at an angle of incidence of 11° to the surface normal using a 

combined reflection-transmission accessory in a Bruker Vertex 70v Fourier-transform infrared 

(FTIR) spectrometer. The low temperature was obtained using an Oxford Instruments CFV2 

continuous-flow helium cryostat. The vacuum pressures were 2 mbar for the optical path in the 

spectrometer and 1 × 10�� mbar in the sample environment of the cryostat. The procedure for 

reduction of the transmission and reflection spectra to obtain absorption spectra is described 

elsewhere31. 
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 7

XPS measurements were performed in a standard ultrahigh vacuum (UHV) chamber operating 

at a base pressure of less than 2 × 10��� mbar with hydrogen as the main residual gas. Samples 

were attached to the sample plates by spot welding tantalum straps across the sample edges. This 

also provided an electrical connection between the CAS films and the spectrometer. In vacuo 

sample cleaning was performed by means of Ar+ ion sputtering and a radiative heating stage. The 

core-level electronic structure, valence band density of states and secondary electron cutoff 

(SEC) were measured using monochromated Al Kα x-ray radiation, operating nominally at 250 

W, details of which, including the calibration of the spectrometer, are described elsewhere32. 

Samples were sputtered and annealed in order to remove surface contaminants including 

oxides and hydrocarbons which inevitably form due to handling in ambient atmosphere. During 

cleaning, the samples were monitored by XPS and were considered to be clean when the C 1s 

peak and peaks due to antimony oxide were no longer visible on the survey spectra. Such 

cleanliness was achieved by grazing angle (20°) sputtering with 500 eV Ar+ in 5 minute steps (30 

minutes total) followed by annealing at 200°C for 60 minutes. Relatively low energy and a 

grazing angle of incidence were used in order to minimize damage. This cleaning facilitated the 

measurement of a more representative surface of CuSbS2 and hence, prevented the valence band 

(VB) spectra being overwhelmed by signal from the contamination. It is noted however, that a 

full set of XPS spectra was taken prior to surface cleaning to demonstrate the changes taking 

place and also the tendency of oxide formation at the surface of this material. 

Prior to cleaning, the main C 1s signal, due to contaminant carbon, was found to have a 

binding energy (BE) of 284.7 eV and was deemed to have either experienced no, or very 

minimal charging due to this binding energy being observed for contaminant carbon on this 

material previously.2,8,18,33 However, after subjecting the sample to surface cleaning, the very 
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 8

poor signal to noise ratio for the C 1s peaks meant that this peak could no longer be used for 

charge correction. Instead, it is believed the copper in CAS should be affected least by cleaning, 

and as such, the copper 2p3/2 peak should demonstrate the same BE throughout. Therefore, the 

spectra were calibrated using the Cu 2p3/2 BE of CAS prior to cleaning, which was measured to 

be 932.0 eV. 

Computational Modeling. All periodic Density Functional Theory (DFT) calculations in this 

article were performed through the Vienna Ab Initio Simulation Package (VASP). The screened 

hybrid functional HSE06 was used for geometry optimization and the density of states 

calculations. HSE06 includes 25% Hartree-Fock exchange, which is screened with a parameter 

of w = 0.11 bohr-1, with 75% exchange and full correlation from the Generalized Gradient 

Approximation (GGA) functional PBE. This method has been used successfully in previous 

reports on CuSbS2 and is described more fully there1,7. The projector-augmented wave method 

was used to describe the interaction between valence and core electrons, and scalar-relativistic 

pseudopotentials were used. A cut-off energy of 375 eV and a Γ-centered k-point mesh of 4 × 7 

× 2 were used in all calculations, determined to be sufficient to converge the total energy to 

within 1 meV/atom. A convergence criterion of 0.01 eV Å-1 on the forces per atom was used for 

the geometry optimization, and the cut-off energy was increased to prevent errors arising from 

Pulay stress. 

 

RESULTS AND DISCUSSION 

The Raman spectrum for CuSbS2 is shown in Figure 2 and reveals a single intense peak at 335 

cm-1, which is characteristic of the chalcostibite phase34. Also observed are weaker Raman 

modes at 101, 140 and 164 cm-1, along with two weak features around 220 and 260 cm-1, all of 

which have been reported or observed previously2. The Raman modes corresponding to Sb2S3
35, 
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 9

CuS36 and the other stoichiometries of copper antimony sulfide, Cu3SbS3
37, Cu3SbS4

38 and 

Cu12Sb4S13
34, are not present in the spectrum. This supports previous x-ray diffraction (XRD) 

measurements of CuSbS2 prepared using an identical method3, in finding that the CuSbS2 is 

phase-pure. 

 

Figure 2. Raman spectrum for the CAS sample. 

Core-Level XPS. XPS can be used as a powerful tool for determining oxidation states in 

materials. In addition, it can also identify and determine the effects of surface contamination, 

which can be detrimental to device performance. Unfortunately, complexities in the spectra can 

lead to misinterpretations, which led to the adoption of the fitting procedure applied below. 

Further discussion of these complexities with regards to CAS is given in the Supporting 

Information. 

The pre- and post-cleaning survey spectra are shown in Figure 3. Peaks for the expected 

elements of copper, antimony and sulfur from the material are visible, along with peaks from 

carbon and oxygen; not unexpected because of hydrocarbon contamination from exposure to 

atmosphere, which then subsequently reduced after cleaning. Sodium peaks were also found, but 

did not decrease on cleaning, suggesting that the sodium has diffused through from the glass, as 

has been seen in similar materials. Further discussion of the nature and effects of sodium with 

the corresponding spectra can be found in the Supporting Information. 

Page 9 of 38

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 10

 

Figure 3. XPS survey spectra for the CAS sample before and after surface cleaning. 

The following is an analysis of the high resolution spectra for the regions of interest in this 

material. The fitted binding energies and FWHM of the core-levels are summarized in Table 1. 

All spectra were fitted using Voigt functions after Shirley background subtraction. Further 

details of the analysis, with the associated spectra, and values for surface stoichiometry can be 

found in the Supporting Information. 

The Cu 2p spectra were fitted with one doublet separated by 19.8 eV39 and with an area ratio 

of 1:2, attributed to Cu+ in CuSbS2. The FWHM of the Cu 2p1/2 peak is somewhat broader than 

that of the Cu 2p3/2 peak due to Coster-Kronig effects40. Because charge correction was achieved 

using the Cu 2p3/2 peak, all spectra are nominally similar, and a comparison before and after 

cleaning is shown in Figure 4. It can be seen that no discernible change occurred during the 

cleaning process, showing no oxidation of the copper in the material after growth and 

demonstrating the quality of the material, as copper oxidation has been noted previously21. 
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 11

 

Figure 4. XPS spectra for the Cu 2p region of the CAS sample before and after surface cleaning. 

Fitted peaks shown in red and peak envelope shown in black. 

The overlapping regions of Sb 3d and O 1s were fitted according to the procedure detailed in 

the Supporting Information, and the spectra before and after cleaning are shown in Figure 5. It 

can be seen that prior to cleaning, two distinct peaks are visible in the Sb 3d3/2 region, with a 

shoulder to the lower binding energy side of the lower peak (~537 eV). These features were 

fitted with three Sb 3d doublets, and the remaining intensity in the Sb 3d5/2 region, relating to O 

1s emission, was fitted with two peaks. The strongest, sharpest antimony doublet (red dash) was 

attributed to Sb3+ in CuSbS2, sharpest because of the high crystallinity of the intentionally grown 

material. The doublet at highest binding energy (pink dot) was attributed to antimony in a Sb-O 

environment. It is thought that this oxide consists predominantly of Sb2O3, as the trivalency of 

antimony is maintained and the binding energy is in agreement with literature values41; however, 

it is possible that the oxide is a mixture of Sb2O3 and Sb2O5 because the literature is unclear on 

the distinction between the two oxides in the spectra42–45. Nevertheless, this Sb-O species is 

drastically reduced on surface cleaning, showing that the oxide is present only at the surface of 

the sample and formed during atmospheric exposure. After cleaning, a small amount of oxide 

remained on the surface, which was not removed to avoid inducing sample damage through 

prolonged, excessive sputtering. It is also possible that this remnant oxide is present in the bulk 
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 12

of the sample and so could not be removed by surface cleaning; however, due to the low level of 

oxide remaining (see Supporting Information for details), it is thought to have little effect on the 

measurements. The O 1s peak at higher binding energy (orange shading) is consistent with an 

adventitious species associated with carbon46, while the peak at lower binding energy (purple 

shading) that almost fully overlaps the antimony oxide Sb 3d5/2 peak is attributed to the oxygen 

from within this antimony oxide43, as it is also reduced upon cleaning. The third, small antimony 

doublet at lower binding energy (blue dot dash) is attributed to metallic antimony42. It is believed 

that the metallic antimony is not created by the preferential sputtering of sulfur, nor the 

dissociation of sulfur during the surface cleaning for several reasons. Firstly, the amount of 

metallic antimony relative to the antimony from CAS decreases after surface cleaning, whereas if 

it were created by the surface cleaning, one would expect it to increase. Secondly, surface 

cleaning-induced damage to the sample was minimized by using relatively low sputtering 

energies and anneal temperatures, as detailed in the experimental section. In a separate study 

where high energy sputtering was used (3 keV)8,18, the amount of sputter-induced antimony was 

markedly higher and could have a significant effect on the measurements. Further discussion of 

the presence of metallic antimony is given in the Supporting Information. 
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Figure 5. XPS spectra for the Sb 3d and O 1s overlap region of the CAS sample before and after 

surface cleaning. Peak envelope shown in black. 

A comparison of the S 2p spectra before and after surface cleaning is shown in Figure 6. 

Doublets were fitted with a separation of 1.18 eV47 and an area ratio of 1:2. Before cleaning, the 

spectra were fit with three doublets, and after cleaning, were fit with two doublets. The species 

which was eliminated after cleaning (green shading) is attributed to sulfur-containing surface 

contamination48, as seen in other sulfide materials32. The two strongest doublets (red dash & blue 

dot), separated by 0.3 eV are assigned to S2- in CAS. Each doublet is attributed to one of the two 

different sulfur coordination sites described in the introduction (see Figure 1). In the literature, 

few attempts at fitting the S 2p region have been made, and only one group fit it with more than 

one doublet8,18; however, the signal-to-noise ratio (SNR) is poor and the authors state that the 

extra doublets are due to unreacted precursor. It is our opinion, however, that the extra sulfur 

peaks in that study were probably due to sputter damage, affirmed by the sputter profile shown 

there. The viability of the presence of two doublets in Figure 6 is initially confirmed by the poor 

quality of fit when using one doublet (see Figure S2), and is strengthened by: the area ratio 

between the doublets being 1:1, as expected from the crystal structure; samples previously 

measured by the authors being fit this way equally well33; and the large difference in 

coordination environments for the sulfur. Despite this, the specific assignment of the S 2p 

doublets to their corresponding coordination environment is unclear, because of the severely 

distorted structure of CAS and the complications involved with predicting the binding energies 

of sulfur for complex systems49. Also, although the S1 environment is coordinated to an extra 

cation, two of the bonds with antimony are significantly longer (3.12 Å) than the others28 (2.30 – 

2.57 Å), and as such are believed to be governed by van der Waals forces50. Therefore, the 
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amount of charge transfer, differences in electronegativities of the cations, the effect of bond 

lengths and second-nearest neighbors will all contribute differently to the binding energy, and as 

such, no definitive assignment is given here. Prior to cleaning, the sample showed no presence of 

sulfate species, as has been seen in previous reports of this material22,33. 

 

Figure 6. XPS spectra for the S 2p region of the CAS sample before and after surface cleaning. 

Peak envelope shown in black. 

Generally, the binding energies reported for this material are in poor agreement with those 

measured here, excepting one study with well fitted data2, and other CAS samples measured by 

the authors33. However, it is believed that some studies are lacking a charge correction17, or have 

misapplied one23, as the relative binding energy differences are in agreement with those 

measured here. Furthermore, other studies which are in contrast with our values suffer as their 

binding energies were either not quoted22, not fitted in the case of multi-component regions21, or 

the SNR were so poor that no values could be confidently assigned20. The merit of these analyses 

therefore cannot be evaluated. Additionally, as discussed above, the presence of contamination 

and oxide formation can affect the measured binding energies and band positions, which can also 
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change as a function of composition and by the presence of mixed phases. In this respect, some 

studies seem to suffer from this without full acknowledgement of the ramifications8,13,18. 

As shown in Table 1, the shifts in binding energy before and after surface cleaning are rather 

small and so it is concluded that the gentle cleaning employed here did not significantly affect 

the underlying material. Further discussion on the binding energies, including those from 

contamination, can be found in the Supporting Information, along with all fitted binding energies 

in Table S1. Also presented in the Supporting Information are the XPS-derived surface 

stoichiometry values, and a discussion and comparison of the electronic structure and sample 

quality of the as-deposited and annealed material. 

Table 1. XPS binding energiesa determined for the main peaks of CAS and electronic band 

positionsb before and after surface cleaningc. 

Sample CuSbS2 

Cu 2p3/2 Sb 3d5/2 S 2p3/2 (1) S 2p3/2 (2) WF IP EA 

Before 
Cleaning 

931.97 
(1.13) 

529.11 
(0.80) 

161.28 
(0.62) 

161.58 
(0.88) 

   

After Cleaning 931.97 
(1.13) 

529.19 
(0.86) 

161.33 
(0.66) 

161.64 
(0.76) 

4.73 4.98 3.43 

a Peak FWHM are given in parentheses and the binding energies of all fitted peaks in this study 
can be found in Table S1. 

b Values of: work function (WF), ionization potential (IP), and electron affinity (EA) were 
calculated from XPS and optical absorption spectra. 

c All values are given in eV. 

Band Edge Positions. When considering solar cell materials, an often overlooked point to 

consider is how the band edge positions affect the architecture of the cell. Whilst a desirable 

absorber band gap is necessary for decent efficiencies, performance is largely compromised if 

the band alignments hinder charge carrier extraction. 
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Nevertheless, the direct and indirect band gaps of CuSbS2 were determined from the 

absorption spectra both at room and cryogenic temperatures using the method described in the 

literature51, and are shown in the Tauc plots in Figure 7. Room temperature measurements (300 

K) allow the extraction of both the direct (1.60 eV) and indirect (1.55 eV) band gaps, which are 

in agreement with a previous study that found the direct transition to lie 0.1 eV higher than the 

indirect transition, and led to previous misclassification of the fundamental gap of this material 

to be direct in nature7. The direct and indirect gaps at cryogenic temperatures (4 K) were also 

determined for comparison with the DFT calculations and were found to be 1.69 eV and 1.59 eV 

respectively. As the DFT HSE06 (0 K) direct and indirect band gaps were found to be 1.82 eV 

and 1.67 eV respectively, this is in satisfactory agreement with the experimental results at 4 K, 

with the slight discrepancy explained because of the lack of inclusion of excitonic effects which 

may affect the experimental absorption. 

 

Figure 7. Optical absorption data from CAS. Tauc plot fittings for the direct and indirect gaps of 

the CAS sample at 4 K and 300 K. 

It is also important, at least from an initial cell-design perspective, that the relative energies 

between the conduction band minimum (CBM) and valence band maximum (VBM) are known 

with respect to the vacuum level: these are the electron affinity (EA) and ionization potential (IP) 
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respectively. Direct measurements of IP are possible using XPS, the method of which is 

described elsewhere32. The IP and, as a consequence work function (WF), of CAS after cleaning 

were determined to be 4.98 eV and 4.73 eV respectively from the fittings shown in Figure S8. By 

using a vacuum alignment procedure52 and taking the measured indirect and direct 300 K band 

gap value of 1.55 eV and 1.60 eV from Figure 7 respectively, the band alignment is compared 

with CZTS, CIGS and CdS in Figure 8, with the values of IP and WF shown in Table 1 

(literature values of ionization potential and band gap are taken for CdS53, CIGS54 and CZTS53). 

An EA of 3.43 eV was determined from the difference between the measured IP and indirect 

band gap. 

 

Figure 8. Vacuum-aligned band diagram for CAS derived from XPS IP and optical indirect 

(solid line) and direct (dashed line) band gap measurements compared with other common 

absorbers and the common n-type window layer material, CdS. 

Although XPS can be used to great effect in determining band positions55 and also performing 

band alignments at junction interfaces56, it is not widely performed, especially on new materials. 

Hence these measurements are absent from the majority of CAS literature. However, one study13 

using ultraviolet photoemission spectroscopy (UPS) measured a WF of 4.86 eV, in good 
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agreement with our values, and an ionization potential of 5.25 eV, which considering the 

apparent level of contamination present in this cited study, is not unexpected as the fitting for the 

VBM is unclear. In another study, with extremely heavy antimony oxide contamination present, 

a very high IP and band gap (2.75 eV) were measured33. This suggests that the presence of 

antimony oxide could be a contributing factor to the poor performance of CAS so far, because 

Sb2O3 has a relatively large band gap57 and would act as an insulating layer within the cell. It is 

proposed that only with the use of surface sensitive techniques such as XPS, that the true 

ramifications of this oxide formation can be determined, because as the oxide is very thin (<3nm, 

evidenced from the spectral ratios and estimated escape depth of electrons in Figure S6), optical 

measurements of the band gap would not be affected by it. Also, as the oxide crystallinity is 

probably poor and given the thinness of this layer, identification may be missed by XRD 

analysis. In this respect, surface sensitive XPS can provide indispensable information: 

identifying unwanted contaminants and also measuring the effect they have on the electronic 

structure. 

It has been previously suggested that the poor open circuit voltage (VOC) in CAS cells arises 

partly from a poor conduction band (CB) alignment with the n-type layer4, and this is confirmed 

here in Figure 8, with the conduction band of CAS lying 0.85 eV higher than that of CdS, which 

with such a high conduction band offset (CBO), would suggest that a recombination center 

would be present here58. In fact, in order to stop the formation of an electron barrier at the 

interface, the conduction band of the n-type layer should be 0–0.4 eV higher than that of the 

absorber59, as is the case with both CIGS/CdS and CZTS/CdS as seen in Figure 8. It is therefore 

obvious that utilizing traditional CIGS cell architectures for CAS is unfavorable for device 

performance. The use of CdS as the n-type layer not only creates the cliff-like CBO4, but also 
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undermines the goal of developing environmentally-friendly structures. It may also be the case 

that along with replacing the n-type layer, the back contact may also need replacing as the work 

function of typically-used molybdenum (4.35–4.90 eV60) may not be favorable for charge 

extraction. It is therefore apparent that further research is needed to identify more ideal partner 

materials for CAS in a cell; this could be achieved by measuring the band alignments of grown 

heterojucntions. 

Density of States. The IP found in the previous section is unusually low compared with other 

PV absorbers (see Figure 8). This has been seen previously in materials with non-bonding lone 

pairs32, where this electronic structure feature was the reason for the remarkably high bands, 

causing a CB misalignment with CdS, and it is thought that a similar situation could be present in 

CAS as well. The partial density of states (pDoS) in the valence band along with the 

experimentally measured valence band spectra from XPS (after cleaning) are shown in Figure 9. 

A Shirley background was subtracted from the spectra to account for inelastically scattered 

electrons. The pDoS curves were corrected using standard photoionisation cross sections61, 

convolved with a Gaussian function (0.38 eV FWHM) to account for thermal broadening and the 

spectrometer resolution, and then further convolved with a Lorentzian function (0.25 eV 

FWHM) to account for lifetime broadening. The corrected pDoS curves were then summed, and 

the total curve aligned to the XPS data for direct comparison. There is generally good agreement 

between the calculated density of states (DoS) and the XPS spectra, with all features accounted 

for and the relative intensities of the correct order. Especially, Cu 3d states of the main feature 

(II) and the leading edge at the top of the valence band (I) are reproduced well. The only 

differences arise at features III and IV (better shown in the zoomed region of Figure 9), probably 
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due to final-state relaxation effects in XPS, which are known to shift features which are deeper in 

the valence band to lower binding energies32. 

 

Figure 9. Simulated and measured VB spectra for CAS with respect to the Fermi level at 0 eV. 

Background subtracted XPS data is compared with broadened and corrected partial DoS curves. 

Top spectra shows intensity zoomed region to better show the underlying curves. Green data are 

from XPS and black curve with grey shading is the total summed DoS. 

Following the excellent experimental corroboration from comparing XPS spectra and corrected 

DoS curves, it is now prudent to discuss the pDoS contributions with respect to the uncorrected 

curves due to the dominance of Cu 3d states arising from the large photoionisation cross section 

of this orbital. Thus, these are shown in Figure 10a, also with the corresponding DoS for the CB. 

Without the corrections, the VBDoS is still dominated by Cu 3d states, and the valence band 

shows three distinct features (V, VI & V*). Similar to both CIGS and CZTS, the copper in CAS 

is tetrahedrally coordinated to sulfur in the crystal structure and therefore the crystal field splits 

the Cu 3d orbitals into a non-bonding e doublet, and a t2 triplet, which is able to bond62. These 

features are present in Figure 10 as the non-bonding eg states (VI), and the bonding (V) and 

antibonding (V*) hybridization of the t2g states with S 3p states. The bottom of the highest 
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valence band is comprised of bonding orbitals of S 3p states with a slight contribution from Sb 

5p states (VII), and the antibonding states of this interaction form the main contribution to the 

conduction band (VII*). 

 

Figure 10. a) & b) Total and partial electronic density of states curves for CAS, with intensity 

zoomed region to more clearly show the underlying orbitals. Curves have been convolved with a 

Gaussian function (0.3 eV FWHM) in order to better distinguish features. DoS curves are aligned 

to the VBM. Black curve with grey shading is the total summed DoS. c) Configuration energies 

for the valence orbitals displayed with a schematic of the bonding hybridizations as discussed in 

the text. It is noted that these values do not take ionization, multi-electron occupancy or 

hybridization into account and are shown only as a schematic guide. Part labels are discussed and 

referred to throughout the text. 
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Further insights into the bonding nature are gained when studying the states normally 

overwhelmed by intensity from Cu d/S p hybridization and to this end, we consider the zoomed 

region of the valence and conduction band edges in Figure 10b. At first glance, it would seem 

that the Sb 5s states are localized at ~10 eV in feature VIII, which agrees with the classical 

model of lone pair electrons: that they are too tightly bound and therefore non-bonding. 

However, there are also Sb s states at the top of the valence band (X) and the bottom of the 

conduction band (X*), which suggests that the contribution here is due to interactions via the 

revised lone pair model29. In this model, the lone pair electrons firstly interact with S 3p 

electrons and the full antibonding orbital of this interaction is then sufficiently high so that it can 

subsequently interact with empty Sb 5p states, resulting in bonding states in the valence band (X) 

and antibonding states at the bottom of the conduction band (X*). Our findings, in agreement 

with previous analyses of the VBDoS of CAS1,30, are in direct opposition to a more recent study 

which claimed that the Sb 5s lone pair is inert, localized and contributes nothing to bonding in 

the valence band27. We believe this interpretation to be incorrect for two main reasons: first, 

because the top of the valence band is so well reproduced between the DoS and XPS spectrum, 

our bonding model is supported, even though the Sb states have weak cross sections when 

compared to the Cu states. Second, due to the distorted nature of the SbS5 pyramids in the crystal 

structure, the revised lone pair model suggests that these interactions should indeed take place. In 

fact, the structure is stabilized by projecting states into the crystal void, whereas in undistorted 

structures, this interaction is symmetry forbidden30. 

The bonding mechanisms described above and the other main contributions are shown 

schematically in Figure 10c to more clearly demonstrate the proposed hybridizations from the 
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configuration energies (CE)63,64, most importantly, the effect of the lone pairs and the nature of 

the Cu 3d states in the valence band. 

The described features are in agreement with previous analyses of CAS DoS 

calculations1,7,27,30; however, no solid link has been previously made to the effect of these 

features regarding the electronic properties. As discussed previously, much initial progress was 

made likening CAS to CIGS and also to CZTS, and the comparisons are still drawn in analyses 

of the DoS30, especially regarding the Cu 3d/S 3p states in the valence band7, which are indeed 

very similar to the tetrahedral environment also present in CIGS. However, the full merit of this 

practice is questioned when it is clear that the crystal structure of CAS is so different from CIGS, 

then so should be the DoS as the bonding is what leads to the adopted crystal structure. Clearly, 

from the CBDoS, Sb 5p states are the main cation contributor in CAS, whereas in CIGS, the 

bottom of the CB is mainly In/Ga s states62,65. Consequently, this has been recognized previously 

and found to be the reason why CAS shows superior absorption to CIGS66, but no further 

discussions have been made27. We then posit that this difference is also the cause of the low IP 

found previously and discussed above. In CIGS, the In/Ga are in the 3+ oxidation state, as is Sb 

in CAS, however, being group III elements, In/Ga have formally empty valence s orbitals for the 

3+ oxidation state ([Kr]4d105s05p0/[Ar]3d104s04p0), whereas in group V Sb, it is full 

([Kr]4d105s25p0). This means that in CIGS, empty cation s orbitals bond with full anion p orbitals 

to form regular full bonding states at the bottom of the valence band and empty antibonding 

states at the bottom of the conduction band, whereas in CAS the full Sb 5s orbital is available for 

bonding and due to the mechanism described above, states are found throughout the valence 

band and at the bottom of the conduction band. It is unsurprising that the first conduction band of 

CAS is dominated by antibonding Sb 5p/S 3p states as Sb-5p are the first empty orbitals that are 
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energetically within the proximity of the full S 3p orbitals. This is shown, in contrast to the 

empty states of CIGS, in the schematic configuration energy63,64 diagram in Figure 11, with the 

main contributions to the VBM and CBM marked. From this, we can also see that the empty 

cation s states in CIGS are energetically closer to the anion p orbital than the also empty cation p 

orbitals, and therefore the cation s nature of the CBM in CIGS is explained as well. 

 

Figure 11. Configuration energies for the valence orbitals of CIGS and CAS. The formal ionic 

occupancy of the orbitals within the materials are marked and the main orbital contributions to 

the VBM and CBM are shown. 

Although we believe that the Sb lone pair plays some part in raising the energy levels of the 

bands in CAS, the Cu d states must also have an effect due to their dominating presence in the 

valence band. In other dominant d-orbital semiconductors, the chemical trend is that with 

increasing separation between the cation d and anion p levels, the VBM position rises, given a 

common-cation67. If one accepts this, then by studying Figure 11, the CAS analogue replacing S 

with Se, that is CuSbSe2 (CASe), should yield a lower IP than CAS, and this has been previously 

reported1,68. This then, would suggest that CIGS, with common Cu-cation, and Se as an anion, 
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should show a similar trend when compared to CAS. As this is not the case, it is then evident that 

it is the presence of antimony over indium/gallium which is responsible for the elevation of the 

valence band, both through the addition of Sb 5s states to the valence band, but also the shifting 

of Cu 3d states within the VBM. 

As has been shown before, the growth method can strongly affect the device quality with 

regards to contaminant formation. However, another issue is the formation of defects within the 

absorber material which can also affect device performance. ‘Defect tolerance’ is a term used 

when the formation of defects does not negatively affect the properties of a material and has been 

classified to occur when the VBM is antibonding in nature and the CBM is bonding in nature, so 

that defects would produce only shallow levels69. To this extent, CAS should benefit from at 

least some measure of this property because even though the CBM is predominantly antibonding 

Sb p/S p states, the VBM is strongly antibonding Cu d/S p with also a slight contribution from 

Sb s states due to the lone pair bonding mechanism. Furthermore, the dominant vacancy in CAS 

has been shown to be the acceptor copper vacancy (VCu)13 which leads to the inherent p-type 

conductivity and also the crystallographic differences between the two cation-anion 

environments makes CAS less prone to cation disorder, and the band tailing associated with it3, 

both of which support the idea that CAS should be defect tolerant. 

These observations and reasoning all support the postulate that advancement in CAS research 

now requires a definitive move away from CIGS analogies. The lone pair of electrons from the 

antimony cation provides extra states to both the valence and conduction bands of CAS, which 

are not present in CIGS. This leads to a higher VBM level, resulting in a markedly low IP for 

CAS, which results in a performance-damaging CBO with CdS. Therefore, CAS should be 
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developed, along with its true analogous materials (the [Cu-(Sb/Bi)-(S/Se)] family of systems), 

as its own class of earth-abundant absorber materials. 

 

CONCLUSIONS 

The valence band density of states and the size and nature of the band gaps of the promising 

absorber material, CuSbS2 have been compared experimentally and theoretically for the first 

time. We show that the strong Cu d nature of the valence band obscures states arising from the 

antimony, but which play a role in determining the properties of the material. In contrast with 

CIGS, the conduction band minimum consists of non-copper cation p/anion p states rather than 

non-copper cation s/anion p states as in CIGS; a result of Sb3+ being a group V element rather 

than the group III (In/Ga)3+ in CIGS. The full Sb 5s states therefore also feature at the top of the 

valence band through the revised lone pair model, along with Sb 5p states. These extra 

contributions to the valence band play some role in raising the VBM and causing the low IP of 

4.98 eV observed here. The band levels measured here support the reasoning that CdS is an 

inappropriate n-type window layer for CAS because of the large CBO, resulting from the low EA 

(3.43 eV) which was determined using a combination of IP measurements from XPS and a band 

gap measurement of 1.55 eV from the room temperature indirect absorption spectra. This 

approach to cell design, which arises from CIGS development, is part of the reason that CAS has 

seen poor performance. We have also shown a thorough core-level XPS analysis of CAS, which 

reveals that the two sulfur coordination environments can be determined by XPS, and also the 

effects of contamination, which is crucial given the spectral complexities of this material. 

Following a thorough literature survey of this material, it is believed that these complexities have 

led to misinterpretations of XPS spectra, and therefore this could have also contributed to the 

poor performance of CAS cells. It is therefore clear that the use of CdS as the n-type layer in 
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CAS cells is less favorable than for CIGS cells. However, with alternative n-type material with 

better band alignments, the potential of CAS as a solar absorber remains. 
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