892 research outputs found
Ab initio calculation of the Hoyle state
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier
than our sun and in the production of carbon and other elements necessary for
life. This excited state of the carbon-12 nucleus was postulated by Hoyle [1]
as a necessary ingredient for the fusion of three alpha particles to produce
carbon at stellar temperatures. Although the Hoyle state was seen
experimentally more than a half century ago [2,3], nuclear theorists have not
yet uncovered the nature of this state from first principles. In this letter we
report the first ab initio calculation of the low-lying states of carbon-12
using supercomputer lattice simulations and a theoretical framework known as
effective field theory. In addition to the ground state and excited spin-2
state, we find a resonance at -85(3) MeV with all of the properties of the
Hoyle state and in agreement with the experimentally observed energy. These
lattice simulations provide insight into the structure of this unique state and
new clues as to the amount of fine-tuning needed in nature for the production
of carbon in stars.Comment: 4 pp, 3 eps figs, version accepted for publication in Physical Review
Letter
Manifestly Covariant Analysis of the QED Compton Process in and
We calculate the unpolarized QED Compton scattering cross section in a
manifestly covariant way. Our approach allows a direct implementation of the
specific kinematical cuts imposed in the experiments, {\it e. g.} HERA-H1. We
compare the 'exact' cross section in terms of the structure functions , assuming the Callan-Gross relation, with the one obtained using the
equivalent photon approximation (EPA) as well as with the experimental results.
We find that the agreement with the EPA is better in bins, where
is the fraction of the longitudinal momentum of the proton carried
by the virtual photon, compared to the bins in the leptonic variable .Comment: 22 pages, 4 figures, 2 table
Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei
An algebraic sp(4) shell model is introduced to achieve a deeper
understanding and interpretation of the properties of pairing-governed 0+
states in medium mass atomic nuclei. The theory, which embodies the simplicity
of a dynamical symmetry approach to nuclear structure, is shown to reproduce
the excitation spectra and fine structure effects driven by proton-neutron
interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure
Branon search in hadronic colliders
In the context of the brane-world scenarios with compactified extra
dimensions, we study the production of brane fluctuations (branons) in hadron
colliders (, and ) in terms of the brane tension
parameter , the branon mass and the number of branons . From the
absence of monojets events at HERA and Tevatron (run I), we set bounds on these
parameters and we also study how such bounds could be improved at Tevatron (run
II) and the future LHC. The single photon channel is also analyzed for the two
last colliders.Comment: 17 pages, 10 figures, LaTeX. New comments and figures included. Final
version to appear in Phys. Rev.
Simultaneous Projectile-Target Excitation in Heavy Ion Collisions
We calculate the lowest-order contribution to the cross section for
simultaneous excitation of projectile and target nuclei in relativistic heavy
ion collisions. This process is, to leading order, non-classical and adds
incoherently to the well-studied semi-classical Weizs\"acker-Williams cross
section. While the leading contribution to the cross section is down by only
from the semiclassical process, and consequently of potential
importance for understanding data from light projectiles, we find that phase
space considerations render the cross section utterly negligible.Comment: 9 pages, LA-UR-94-247
Dissipative systems: uncontrollability, observability and RLC realizability
The theory of dissipativity has been primarily developed for controllable
systems/behaviors. For various reasons, in the context of uncontrollable
systems/behaviors, a more appropriate definition of dissipativity is in terms
of the dissipation inequality, namely the {\em existence} of a storage
function. A storage function is a function such that along every system
trajectory, the rate of increase of the storage function is at most the power
supplied. While the power supplied is always expressed in terms of only the
external variables, whether or not the storage function should be allowed to
depend on unobservable/hidden variables also has various consequences on the
notion of dissipativity: this paper thoroughly investigates the key aspects of
both cases, and also proposes another intuitive definition of dissipativity.
We first assume that the storage function can be expressed in terms of the
external variables and their derivatives only and prove our first main result
that, assuming the uncontrollable poles are unmixed, i.e. no pair of
uncontrollable poles add to zero, and assuming a strictness of dissipativity at
the infinity frequency, the dissipativities of a system and its controllable
part are equivalent. We also show that the storage function in this case is a
static state function.
We then investigate the utility of unobservable/hidden variables in the
definition of storage function: we prove that lossless autonomous behaviors
require storage function to be unobservable from external variables. We next
propose another intuitive definition: a behavior is called dissipative if it
can be embedded in a controllable dissipative {\em super-behavior}. We show
that this definition imposes a constraint on the number of inputs and thus
explains unintuitive examples from the literature in the context of
lossless/orthogonal behaviors.Comment: 26 pages, one figure. Partial results appeared in an IFAC conference
(World Congress, Milan, Italy, 2011
Nuclear masses set bounds on quantum chaos
It has been suggested that chaotic motion inside the nucleus may
significantly limit the accuracy with which nuclear masses can be calculated.
Using a power spectrum analysis we show that the inclusion of additional
physical contributions in mass calculations, through many-body interactions or
local information, removes the chaotic signal in the discrepancies between
calculated and measured masses. Furthermore, a systematic application of global
mass formulas and of a set of relationships among neighboring nuclei to more
than 2000 nuclear masses allows to set an unambiguous upper bound for the
average errors in calculated masses which turn out to be almost an order of
magnitude smaller than estimated chaotic components.Comment: 4 pages, Accepted for publication in Physical Review Letter
Particle Aggregation in a turbulent Keplerian flow
In the problem of planetary formation one seeks a mechanism to gather small
solid particles together into larger accumulations of solid matter. Here we
describe a scenario in which turbulence mediates this process by aggregating
particles into anticyclonic regions. If, as our simulations suggest,
anticyclonic vortices form as long-lived coherent structures, the process
becomes more powerful because such vortices trap particles effectively. Even if
the turbulence is decaying, following the upheaval that formed the disk, there
is enough time to make the dust distribution quite lumpy.Comment: 16 pages, 9 figure
Glueball Production in Peripheral Heavy-Ion Collisions
The method of equivalent quanta is applied both to photon-photon and, by
analogy, to double pomeron exchange in heavy-ion collisions. This
Weizs\"acker-Williams approach is used to calculate production cross sections
for the glueball candidate meson via photon-photon and
pomeron-pomeron fusion in peripheral heavy-ion collisions at both RHIC and LHC
energies. The impact-parameter dependence for total and elastic cross sections
are presented, and are compared to results for proton-proton collisions.Comment: 15 pages, 6 figure
- …