26 research outputs found

    Identification of different oxygen species in oxide nanostructures with O-17 solid-state NMR spectroscopy

    Get PDF
    Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the (17)O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency (17)O chemical shifts being observed for the lower coordinated surface sites. H(2)(17)O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. (17)O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Accurate Measurements of NH<sub>3</sub> Differential Adsorption Heat Unveil Structural Sensitivity of Brønsted Acid and Brønsted/Lewis Acid Synergy in Zeolites

    No full text
    Differential adsorption heats of NH3 on a series of zeolites, including MOR, MFI, FER, and BEA, are accurately measured to probe their acidity using flow-pulse adsorption microcalorimetry. Initial adsorption heats of NH3 at Brønsted acid sites (BAS) vary between 105 to 136 kJ/mol, depending on framework aluminum amounts and topography structures of zeolites. A Brønsted/Lewis acid synergy between BAS and proximate tricoordinated framework-associated aluminum species is identified to generate super acid sites with initial adsorption heats of NH3 around 150 kJ/mol, but occurs only in the MFI zeolites and sensitively depends on the Si/Al ratio. These accurate data of NH3 differential adsorption heats unveil structural sensitivity of BAS and Brønsted/Lewis acid synergy in zeolites and provide experimental benchmark data for fundamental understanding of acidity and acid-catalysis of zeolites

    Accurate Measurements of NH<sub>3</sub> Differential Adsorption Heat Unveil Structural Sensitivity of Brønsted Acid and Brønsted/Lewis Acid Synergy in Zeolites

    No full text
    Differential adsorption heats of NH3 on a series of zeolites, including MOR, MFI, FER, and BEA, are accurately measured to probe their acidity using flow-pulse adsorption microcalorimetry. Initial adsorption heats of NH3 at Brønsted acid sites (BAS) vary between 105 to 136 kJ/mol, depending on framework aluminum amounts and topography structures of zeolites. A Brønsted/Lewis acid synergy between BAS and proximate tricoordinated framework-associated aluminum species is identified to generate super acid sites with initial adsorption heats of NH3 around 150 kJ/mol, but occurs only in the MFI zeolites and sensitively depends on the Si/Al ratio. These accurate data of NH3 differential adsorption heats unveil structural sensitivity of BAS and Brønsted/Lewis acid synergy in zeolites and provide experimental benchmark data for fundamental understanding of acidity and acid-catalysis of zeolites

    Effect of natural plant extracts on the quality of meat products: a meta-analysis

    Get PDF
    Natural plant extracts (NPE) from some organs of plants are rich in bioactive substances. They have special nutritional characteristics with strong antioxidant and antimicrobial activities. The potential of NPEs to maintain and improve the quality of meat products has attracted attention due to concerns about the safety hazards of synthetic food additives. This paper extensively reviewed the application of NPE in meat processing, and systematically analyzed the comprehensive effects of different NPE using meta-analysis. Fourty-eight articles from 23 countries were studied with standard mean deviation (SMD) using random effect model, and 28 indexes were isolated. Results showed that NPE can reduce the pH value of meat products, improve antioxidant capacity, reduce the degree of oxidation and inhibit microbial growth. In addition, it was found that NPE had a significant impact on the quality of meat products. This meta-analysis provides quantitative evidence to explain how NPE affects meat quality, and helps to better understand the role of NPE in meat processing

    Intense vortical-field generation using coherent superposition of multiple vortex beams

    No full text
    Abstract Coherent beam combining technology applied to multiple vortex beams is a promising method to generate high-power vortex beams. We utilize the coherent combination of multiple Laguerre-Gaussian beams at the waist plane and propose theoretically a practical generation system for a high-power beam carrying orbital angular momentum by considering oblique incidence. The results demonstrate that the orbital angular momentum distribution of the combined field is similar to that of a single Laguerre-Gaussian beam within the Rayleigh length. Moreover, the combined field has relativistic intensity local spots that exhibit stable spatial propagation. The proposed system may potentially be applied to intense vortical fields, large scale nuclear fusion device, such as suppressing stimulated Raman scattering and filamentation when a laser beam propagates in plasma

    TLR2 regulates Moraxella catarrhalis adhesion to and invasion into alveolar epithelial cells and mediates inflammatory responses

    No full text
    ABSTRACTMoraxella catarrhalis is a major cause of chronic obstructive pulmonary disease. Toll-like receptor 2 (TLR2) plays an important role in the inflammatory response in host respiratory epithelial cells. M. catarrhalis induces an inflammatory immune response in respiratory epithelial cells that is mostly dependent on TLR2. However, the mechanisms by which this pathogen adheres to and invades the respiratory epithelium are not well understood. The present study aimed to reveal the role of TLR2 in M. catarrhalis adhesion to and invasion into alveolar epithelial cells, using molecular techniques. Pretreatment with the TLR2 inhibitor TLR2-IN-C29 enhanced M. catarrhalis adhesion to A549 cells but reduced its invasion, whereas the agonist Pam3CSK4 reduced both M. catarrhalis adhesion and invasion into A549 cells. Similarly, M. catarrhalis 73-OR strain adhesion and invasion were significantly reduced in TLR2−/− A549 cells. Moreover, the lung clearance rate of the 73-OR strain was significantly higher in TLR2−/− C57/BL6J mice than in wild-type (WT) mice. Histological analysis showed that inflammatory responses were milder in TLR2−/− C57/BL6J mice than in WT mice, which was confirmed by a decrease in cytokine levels in TLR2−/− C57/BL6J mice. Overall, these results indicate that TLR2 promoted M. catarrhalis adhesion and invasion of A549 cells and lung tissues and mediated inflammatory responses in infected lungs. This study provides important insights into the development of potential therapeutic strategies against M. catarrhalis and TLR2-induced inflammatory responses
    corecore