26 research outputs found

    Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval

    Get PDF
    Background: Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. Methods and Results: We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). Conclusion: This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane. © 2014 Bomberger et al

    Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα

    Get PDF
    The study identifies a sterol- and oxysterol binding protein (OSBP)-regulated phosphatidylinositol 4-kinase that regulates ceramide transport protein (CERT) activity and sphingomyelin (SM) synthesis. RNA interference silencing experiments identify PI4KIIα; as the mediator of Golgi recruitment of CERT, providing a potential mechanism for coordinating assembly of SM and cholesterol in the Golgi or more distal compartments

    FAmily-CEntered (FACE) Advance Care Planning Among African-American and Non-African-American Adults Living With HIV in Washington, DC: A Randomized Controlled Trial to Increase Documentation and Health Equity

    No full text
    © 2018 American Academy of Hospice and Palliative Medicine Context: No prospective studies address disease-specific advance care planning (ACP) for adults living with HIV/AIDS. Objective: To examine the efficacy of FAmily-CEntered (FACE) ACP in increasing ACP and advance directive documentation in the medical record. Methods: Longitudinal, two-arm, randomized controlled trial with intent-to-treat design recruited from five hospital-based outpatient HIV clinics in Washington, DC. Adults living with HIV and their surrogate decision-makers (N = 233 dyads) were randomized to either an intensive facilitated two-session FACE ACP (Next Steps: Respecting Choices goals of care conversation and Five Wishes advance directive) or healthy living control (conversations about developmental/relationship history and nutrition). Results: Patients (n = 223) mean age: 51 years, 56% male, 86% African-American. One hundred ninety-nine dyads participated in the intervention. At baseline, only 13% of patients had an advance directive. Three months after intervention, this increased to 59% for the FACE ACP group versus 17% in the control group (P \u3c 0.0001). Controlling for race, the odds of having an advance directive in the medical record in the FACE ACP group was approximately seven times greater than controls (adjusted odds ratio = 6.58, 95% CI: 3.21–13.51, P \u3c 0.0001). Among African-Americans randomized to FACE, 58% had completed/documented advance directives versus 20% of controls (P \u3c 0.0001). Conclusions: The FACE ACP intervention significantly improved ACP completion and advance directive documentation in the medical record among both African-American and non-African-American adults living with HIV in Washington, DC, providing health equity in ACP, which can inform best practices

    Hepatitis C Virus Stimulates the Phosphatidylinositol 4-Kinase III Alpha-Dependent Phosphatidylinositol 4-Phosphate Production That Is Essential for Its Replication▿

    No full text
    Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation

    Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth

    No full text
    The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p–14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling
    corecore