26 research outputs found
Constructing Infinite Particle Spectra
We propose a general construction principle which allows to include an
infinite number of resonance states into a scattering matrix of hyperbolic
type. As a concrete realization of this mechanism we provide new S-matrices
generalizing a class of hyperbolic ones, which are related to a pair of simple
Lie algebras, to the elliptic case. For specific choices of the algebras we
propose elliptic generalizations of affine Toda field theories and the
homogeneous sine-Gordon models. For the generalization of the sinh-Gordon model
we compute explicitly renormalization group scaling functions by means of the
c-theorem and the thermodynamic Bethe ansatz. In particular we identify the
Virasoro central charges of the corresponding ultraviolet conformal field
theories.Comment: 7 pages Latex, 7 figures (typo in figure 3 corrected
Psychosocial Treatment of Children in Foster Care: A Review
A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children
A MODEST review
We present an account of the state of the art in the fields explored by the
research community invested in 'Modeling and Observing DEnse STellar systems'.
For this purpose, we take as a basis the activities of the MODEST-17
conference, which was held at Charles University, Prague, in September 2017.
Reviewed topics include recent advances in fundamental stellar dynamics,
numerical methods for the solution of the gravitational N-body problem,
formation and evolution of young and old star clusters and galactic nuclei,
their elusive stellar populations, planetary systems, and exotic compact
objects, with timely attention to black holes of different classes of mass and
their role as sources of gravitational waves.
Such a breadth of topics reflects the growing role played by collisional
stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next
decade, many revolutionary instruments will enable the derivation of positions
and velocities of individual stars in the Milky Way and its satellites and will
detect signals from a range of astrophysical sources in different portions of
the electromagnetic and gravitational spectrum, with an unprecedented
sensitivity. On the one hand, this wealth of data will allow us to address a
number of long-standing open questions in star cluster studies; on the other
hand, many unexpected properties of these systems will come to light,
stimulating further progress of our understanding of their formation and
evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and
Cosmology'. We are much grateful to the organisers of the MODEST-17
conference (Charles University, Prague, September 2017). We acknowledge the
input provided by all MODEST-17 participants, and, more generally, by the
members of the MODEST communit
Recommended from our members
On the Reionization-era Globular Cluster in the Low-mass Galaxy Eridanus II
Using color-magnitude diagrams from deep archival Hubble Space Telescope imaging, we self-consistently measure the star formation history of Eridanus II (Eri II), the lowest-mass galaxy (M ⋆(z = 0) ∼ 105 M ⊙) known to host a globular cluster (GC), and the age, mass, and metallicity of its GC. The GC (∼13.2 ± 0.4 Gyr, 〈[Fe/H]〉 = −2.75 ± 0.2 dex) and field (mean age ∼13.5 ± 0.3 Gyr, 〈[Fe/H]〉 = −2.6 ± 0.15 dex) have similar ages and metallicities. Both are reionization-era relics that formed before the peak of cosmic star and GC formation (z ∼ 2-4). The ancient star formation properties of Eri II are not extreme and appear similar to z = 0 dwarf galaxies. We find that the GC was ≲4 times more massive at birth than today and was ∼10% of the galaxy's stellar mass at birth. At formation, we estimate that the progenitor of Eri II and its GC had M UV ∼ −7 to −12, making it one of the most common type of galaxy in the early universe, though it is fainter than direct detection limits, absent gravitational lensing. Archaeological studies of GCs in nearby low-mass galaxies may be the only way to constrain GC formation in such low-mass systems. We discuss the strengths and limitations in comparing archaeological and high-redshift studies of cluster formation, including challenges stemming from the Hubble Tension, which introduces uncertainties into the mapping between age and redshift. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars
Contains fulltext :
159663.pdf (preprint version ) (Open Access)33 p
Recommended from our members
Metallicity Distribution Functions of 13 Ultra-faint Dwarf Galaxy Candidates from Hubble Space Telescope Narrowband Imaging
We present uniformly measured stellar metallicities of 463 stars in 13 Milky Way (MW) ultra-faint dwarf galaxies (UFDs; M V = −7.1 to −0.8) using narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope. This represents the largest homogeneous set of stellar metallicities in UFDs, increasing the number of metallicities in these 13 galaxies by a factor of 5 and doubling the number of metallicities in all known MW UFDs. We provide the first well-populated MDFs for all galaxies in this sample, with 〈[Fe/H]〉 ranging from −3.0 to −2.0 dex, and σ [Fe/H] ranging from 0.3-0.7 dex. We find a nearly constant [Fe/H]∼ −2.6 over 3 decades in luminosity (∼102-105 L ⊙), suggesting that the mass-metallicity relationship does not hold for such faint systems. We find a larger fraction (24%) of extremely metal-poor ([Fe/H] −2), consistent with the sum of literature spectroscopic studies. MW UFDs are known to be predominantly >13 Gyr old, meaning that all stars in our sample are truly ancient, unlike metal-poor stars in the MW, which have a range of possible ages. Our UFD metallicities are not well matched to known streams in the MW, providing further evidence that known MW substructures are not related to UFDs. We include a catalog of our stars to encourage community follow-up studies, including priority targets for ELT-era observations. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]