523 research outputs found

    The E. Donnall Thomas Lecture: Normal and Neoplastic Stem Cells

    Get PDF
    AbstractDr. Irving Weissman was the honored E. Donnall Thomas lecturer at the Tandem BMT Meetings, held on February 10, 2007, at Keystone, Colorado. Dr. Weissman has been a major player, and has provided us with enormous insight into many areas of biology, dating back to his high school days in Montana. He led an enormously productive career at Stanford University where he has taught us many lessons involving our understanding of lymphocyte homing, stem cell biology, both of the hematopoietic system and other types of stem cells, and also now, about cancer stem cells. Dr. Weissman has made enormous contributions to this burgeoning field that has provided us new insights and new opportunities for treatment strategies. In addition to a very productive laboratory career, he is also currently the director of both the Stem Cell Institute, as well as the Cancer Center at Stanford University. The following text is a modified transcribed version of the presentation made by Dr. Weissman

    Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors.

    Get PDF
    The pluripotent nature of human embryonic stem cells (hESCs) makes them convenient for deriving therapeutically relevant cells. Here we show using Wnt reporter hESC lines that the cells are heterogeneous with respect to endogenous Wnt signalling activity. Moreover, the level of Wnt signalling activity in individual cells correlates with differences in clonogenic potential and lineage-specific differentiation propensity. The addition of Wnt protein or, conversely, a small-molecule Wnt inhibitor (IWP2) reduces heterogeneity, allowing stable expansion of Wnt(high) or Wnt(low) hESC populations, respectively. On differentiation, the Wnt(high) hESCs predominantly form endodermal and cardiac cells, whereas the Wnt(low) hESCs generate primarily neuroectodermal cells. Thus, heterogeneity with respect to endogenous Wnt signalling underlies much of the inefficiency in directing hESCs towards specific cell types. The relatively uniform differentiation potential of the Wnt(high) and Wnt(low) hESCs leads to faster and more efficient derivation of targeted cell types from these populations

    The Safety of Embryonic Stem Cell Therapy Relies on Teratoma Removal

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    New simplified molecular design for functional T cell receptor

    Get PDF
    We have produced a chimeric single-chain T cell receptor (TcR) that combines the specific antibody recognition function and TcR/CD3 signaling properties within the same polypeptide chain. This hybrid molecule consisted of a single-chain antibody combining site that was connected over a short spacer to the transmembrane and cytoplasmic region of CD3. When expressed on TcR- or TcR+ T cell hybridomas it could mediate recognition of relevent target cells and subsequent production of lymphokines; i.e. it could functionally replace the TcR/CD3 complex. Therefore, the single-chain TcR model presented here represents an interesting and useful means for the creation of T cells with new specificities

    Identification of a lineage of multipotent hematopoietic progenitors

    Get PDF
    All multipotent hematopoietic progenitors in C57BL-Thy-1.1 bone marrow are divided among three subpopulations of Thy-1.1^(lo) Sca-1^+ Lin^(-/lo) c-kit^+ cells: long-term reconstituting Mac-1^-CD4^-c-kit^+ cells and transiently reconstituting Mac-1^(lo)CD4^-or Mac-1^(lo) CD4^(lo) cells. This study shows that the same populations, with similar functional activities, exist in mice whose hematopoietic systems were reconstituted by hematopoietic stem cells after lethal irradiation. We demonstrate that these populations form a lineage of multipotent progenitors from long-term self-renewing stem cells to the most mature multipotent progenitor population. In reconstituted mice, Mac-1- CD4^-c-kit^+ cells gave rise to Mac-1^(lo)CD4^- cells, which gave rise to Mac-1^(lo)CD4^(lo) cells. Mac-1^- CD4^-c-kit^+ cells had long-term self-renewal potential, with each cell being capable of giving rise to more than 10^4 functionally similar Mac-1^-CD4^-c-kit^+ cells. At least half of Mac-1^(lo)CD4^- cells had transient self-renewal potential, detected in the spleen 7 days after reconstitution. Mac-1^(lo)CD4^(lo) cells did not have detectable self-renewal potential. The identification of a lineage of multipotent progenitors provides an important tool for identifying genes that regulate self-renewal and lineage commitment

    LYAR, a novel nucleolar protein with zinc finger DNA-binding motifs, is involved in cell growth regulation

    Get PDF
    A cDNA encoding a novel zinc finger protein has been isolated from a mouse T-cell leukemia line on the basis of its expression of a Ly-1 epitope in λgt11 library. The putative gene was mapped on mouse chromosome 1, closely linked to Idh-1, but not linked to the Ly-1 (CD5) gene. The cDNA is therefore named Ly-1 antibody reactive clone (LYAR). The putative polypeptide encoded by the cDNA consists of 388 amino acids with a zinc finger motif and three copies of nuclear localization signals. Antibodies raised against a LYAR fusion protein reacted with a protein of 45 kD on Western blots and by immunoprecipitation. Immunolocalization indicated that LYAR was present predominantly in the nucleoli. The LYAR mRNA was not detected in brain, thymus, bone marrow, liver, heart, and muscle. Low levels of LYAR mRNA were detected in kidney and spleen. However, the LYAR gene was expressed at very high levels in immature spermatocytes in testis. The LYAR mRNA is present at high levels in early embryos and preferentially in fetal liver and fetal thymus. A number of B- and T-cell leukemic lines expressed LYAR at high levels, although it was not detectable in bone marrow and thymus. During radiation-induced T-cell leukemogenesis, high levels of LYAR were expressed in preleukemic thymocytes and in acute T leukemia cells. Fibroblast cells overexpressing the LYAR cDNA from a retrovirus vector, though not phenotypically transformed in vitro, had increased ability to form tumors in nu/nu mice. Therefore, LYAR may function as a novel nucleolar oncoprotein to regulate cell growth

    THYMUS CELL MIGRATION

    Full text link

    Telomerase Activation and Rejuvenation of Telomere Length in Stimulated T Cells Derived from Serially Transplanted Hematopoietic Stem Cells

    Get PDF
    Telomeres shorten in hematopoietic cells, including hematopoietic stem cells (HSCs), during aging and after transplantation, despite the presence of readily detectable levels of telomerase in these cells. In T cells, antigenic stimulation has been shown to result in a marked increase in the level of telomerase activity. We now show that stimulation of T cells derived from serially transplanted HSC results in a telomerase-dependent elongation of telomere length to a size similar to that observed in T cells isolated directly from young mice. Southern analysis of telomere length in resting and anti-CD3/CD28 stimulated donor-derived splenic T cells revealed an increase in telomere size by ∼7 kb for the population as a whole. Stimulation of donor-derived T cells from recipients of HSCs from telomerase-deficient mice did not result in regeneration of telomere length, demonstrating a dependence on telomerase. Furthermore, clonal anti-CD3/CD28 stimulation of donor-derived T cells followed by fluorescent in situ hybridization (FISH) analysis of telomeric signal intensity showed that telomeres had increased in size by ∼50% for all clonal expansions. Together, these results imply that one role for telomerase in T cells may be to renew or extend replicative potential via the rejuvenation of telomere length

    Cloning of terminal transferase cDNA by antibody screening

    Get PDF
    A cDNA library was prepared from a terminal deoxynucleotidyltransferase-containing thymoma in the phage vector λgt11. By screening plaques with anti-terminal transferase antibody, positive clones were identified of which some had β-galactosidase-cDNA fusion proteins identifiable after electrophoretic fractionation by immunoblotting with anti-terminal transferase antibody. The predominant class of cross-hybridizing clones was determined to represent cDNA for terminal transferase by showing that one representative clone hybridized to a 2200-nucleotide mRNA in close-matched enzyme-positive but not to enzyme-negative cells and that the cDNA selected a mRNA that translated to give a protein of the size and antigenic characteristics of terminal transferase. Only a small amount of genomic DNA hybridized to the longest available clone, indicating that the sequence is virtually unique in the mouse genome
    corecore