1,681 research outputs found

    Murine Lewis Lung Carcinoma-Derived Endothelium Expresses Markers of Endothelial Activation and Requires Tumor-Specific Extracellular Matrix In Vitro

    Get PDF
    AbstractThe purpose of the study was to identify characteristics specific to tumor-derived endothelium that may be important in tumor biology, or for the development of targeted therapeutics or imaging agents. Normal C57BI/6 murine heart or lung endothelium, or C57BI/6 murine Lewis lung carcinoma tumor-derived endothelium was isolated from excised tissues using specific antibodies. The endothelium was cultured using either native fibronectin, or the oncofetal form of fibronectin. Cell surface adhesion molecule expression was analyzed by flow cytometry, and the cellular distribution of specific molecules was examined using indirect immunofluorescence staining. Oncofetal fibronectin was critical for maintaining the phenotype of tumor-derived endothelium, which demonstrated an elongated morphology in vitro, with few cell-cell contacts. They expressed high levels of CD31, CD102, and vascular endothelial cadherin, and constitutively expressed CD62E, CD54, and CD106, indicating an “activated” phenotype. Moreover, they expressed significantly greater levels of Sca-1 and Flk-1 than normal murine endothelium. Cellular distribution of CD31, ÎČ-catenin, and CD106 in tumor-derived endothelium was not continuous at cell borders, as observed in cultures of murine heart endothelium. In conclusion, Lewis lung carcinoma-derived tumor endothelium exhibits a specific phenotype in vitro, distinct from normal endothelium, and could be used as an in vitro tool for developing targeted agents

    Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Get PDF
    International audienceNoninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice

    The magnetofection method: Using magnetic force to enhance gene delivery

    Get PDF
    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo

    Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging

    Get PDF
    Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd

    Two-Dimensional Intravascular Near-Infrared Fluorescence Molecular Imaging of Inflammation in Atherosclerosis and Stent-Induced Vascular Injury

    Get PDF
    ObjectivesThis study sought to develop a 2-dimensional (2D) intravascular near-infrared fluorescence (NIRF) imaging strategy for investigation of arterial inflammation in coronary-sized vessels.BackgroundMolecular imaging of arterial inflammation could provide new insights into the pathogenesis of acute myocardial infarction stemming from coronary atheromata and implanted stents. Presently, few high-resolution approaches can image inflammation in coronary-sized arteries in vivo.MethodsA new 2.9-F rotational, automated pullback 2D imaging catheter was engineered and optimized for 360° viewing intravascular NIRF imaging. In conjunction with the cysteine protease-activatable imaging reporter Prosense VM110 (VisEn Medical, Woburn, Massachusetts), intra-arterial 2D NIRF imaging was performed in rabbit aortas with atherosclerosis (n =10) or implanted coronary bare-metal stents (n = 10, 3.5-mm diameter, day 7 post-implantation). Intravascular ultrasound provided coregistered anatomical images of arteries. After sacrifice, specimens underwent ex vivo NIRF imaging, fluorescence microscopy, and histological and immunohistochemical analyses.ResultsImaging of coronary artery–scaled phantoms demonstrated 8-sector angular resolution and submillimeter axial resolution, nanomolar sensitivity to NIR fluorochromes, and modest NIRF light attenuation through blood. High-resolution NIRF images of vessel wall inflammation with signal-to-noise ratios >10 were obtained in real-time through blood, without flushing or occlusion. In atherosclerosis, 2D NIRF, intravascular ultrasound–NIRF fusion, microscopy, and immunoblotting studies provided insight into the spatial distribution of plaque protease activity. In stent-implanted vessels, real-time imaging illuminated an edge-based pattern of stent-induced arterial inflammation.ConclusionsA new 2D intravascular NIRF imaging strategy provides high-resolution in vivo spatial mapping of arterial inflammation in coronary-sized arteries and reveals increased inflammation-regulated cysteine protease activity in atheromata and stent-induced arterial injury

    A Near-Infrared Cell Tracker Reagent for Multiscopic In Vivo Imaging and Quantification of Leukocyte Immune Responses

    Get PDF
    The complexity of the tumor microenvironment necessitates that cell behavior is studied in a broad, multi-scale context. Although tomographic and microscopy-based far and near infrared fluorescence (NIRF, >650 nm) imaging methods offer high resolution, sensitivity, and depth penetration, there has been a lack of optimized NIRF agents to label and track cells in their native environments at different scales. In this study we labeled mammalian leukocytes with VivoTag 680 (VT680), an amine reactive N-hydroxysuccinimide (NHS) ester of a (benz) indolium-derived far red fluorescent probe. We show that VT680 diffuses into leukocytes within minutes, covalently binds to cellular components, remains internalized for days in vitro and in vivo, and does not transfer fluorescence to adjacent cells. It is biocompatible, keeps cells fully functional, and fluoresces at high intensities. In a tumor model of cytotoxic T lymphocyte (CTL) immunotherapy, we track and quantify VT680-labeled cells longitudinally at the whole-body level with fluorescence-mediated molecular tomography (FMT), within tissues at single cell resolutions by multiphoton and confocal intravital microscopy, and ex vivo by flow cytometry. Thus, this approach is suitable to monitor cells at multiple resolutions in real time in their native environments by NIR-based fluorescence imaging

    Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    Get PDF
    Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes.Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence ("IQ-tag") allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging.The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development
    • 

    corecore