1,295 research outputs found

    Entanglement Energetics in the Ground State

    Full text link
    We show how many-body ground state entanglement information may be extracted from sub-system energy measurements at zero temperature. A precise relation between entanglement and energy fluctuations is demonstrated in the weak coupling limit. Examples are given with the two-state system and the harmonic oscillator, and energy probability distributions are calculated. Comparisons made with recent qubit experiments show this type of measurement provides another method to quantify entanglement with the environment.Comment: 7 pages, 3 figures, Conference proceeding for the Physics of Quantum Electronics; Utah, USA, January 200

    Walks of molecular motors in two and three dimensions

    Get PDF
    Molecular motors interacting with cytoskeletal filaments undergo peculiar random walks consisting of alternating sequences of directed movements along the filaments and diffusive motion in the surrounding solution. An ensemble of motors is studied which interacts with a single filament in two and three dimensions. The time evolution of the probability distribution for the bound and unbound motors is determined analytically. The diffusion of the motors is strongly enhanced parallel to the filament. The analytical expressions are in excellent agreement with the results of Monte Carlo simulations.Comment: 7 pages, 2 figures, to be published in Europhys. Let

    Exact Markovian kinetic equation for a quantum Brownian oscillator

    Full text link
    We derive an exact Markovian kinetic equation for an oscillator linearly coupled to a heat bath, describing quantum Brownian motion. Our work is based on the subdynamics formulation developed by Prigogine and collaborators. The space of distribution functions is decomposed into independent subspaces that remain invariant under Liouville dynamics. For integrable systems in Poincar\'e's sense the invariant subspaces follow the dynamics of uncoupled, renormalized particles. In contrast for non-integrable systems, the invariant subspaces follow a dynamics with broken-time symmetry, involving generalized functions. This result indicates that irreversibility and stochasticity are exact properties of dynamics in generalized function spaces. We comment on the relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.Comment: A few typos in the published version are correcte

    Short-term variability and mass loss in Be stars III. BRITE and SMEI satellite photometry of 28 Cygni

    Full text link
    The BRITE Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014-2016. Observations with the Solar Mass Ejection Imager in 2003-2010 and 118 Hα\alpha line profiles were added. For decades, 28 Cyg has exhibited four large-amplitude frequencies: two closely spaced frequencies of spectroscopically confirmed gg modes near 1.5 c/d, one slightly lower exophotospheric (Stefl) frequency, and at 0.05 c/d the difference frequency between the two g modes. This top-level framework is indistinguishable from eta Cen (Paper I), which is also very similar in spectral type, rotation rate, and viewing angle. The Stefl frequency is the only one that does not seem to be affected by the difference frequency. The amplitude of the latter undergoes large variations; around maximum the amount of near-circumstellar matter is increased, and the amplitude of the Stefl frequency grows by some factor. During such brightenings dozens of transient spikes appear in the frequency spectrum, concentrated in three groups. Only eleven frequencies were common to all years of BRITE observations. Be stars seem to be controlled by several coupled clocks, most of which are not very regular on timescales of weeks to months but function for decades. The combination of g modes to the low difference frequency and/or the atmospheric response to it appears significantly nonlinear. Like in eta Cen, the difference-frequency variability seems the main responsible for the modulation of the star-to-disc mass transfer in 28 Cyg. A hierarchical set of difference frequencies may reach the longest timescales known of the Be phenomenon.Comment: 17 pages, 21 figures, submitted to Astronomy & Astrophysic

    Evidence for entangled states of two coupled flux qubits

    Full text link
    We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current--voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.Comment: 4 pages, 4 figures, final versio

    Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age

    Get PDF
    Retrospective histologic analyses of bone biopsies and of post mortem samples from normal persons of different age groups, and of bone biopsies of age- and sex-matched groups of patients with primary osteoporosis and aplastic anemia show characteristic age dependent as well as pathologic changes including atrophy of osseous trabeculae and of hematopoiesis, and changes in the sinusoidal and arterial capillary compartments. These results indicate the possible role of a microvascular defect in the pathogenesis of osteoporosis and aplastic anemia

    Theory of exciton-exciton correlation in nonlinear optical response

    Full text link
    We present a systematic theory of Coulomb interaction effects in the nonlinear optical processes in semiconductors using a perturbation series in the exciting laser field. The third-order dynamical response consists of phase-space filling correction, mean-field exciton-exciton interaction, and two-exciton correlation effects expressed as a force-force correlation function. The theory provides a unified description of effects of bound and unbound biexcitons, including memory-effects beyond the Markovian approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to Physical Review

    Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes

    Get PDF
    A new class of error-correcting quantum codes is introduced capable of stabilizing qubits against spontaneous decay arising from couplings to statistically independent reservoirs. These quantum codes are based on the idea of using an embedded quantum code and exploiting the classical information available about which qubit has been affected by the environment. They are immediately relevant for quantum computation and information processing using arrays of trapped ions or nuclear spins. Interesting relations between these quantum codes and basic notions of design theory are established

    Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction

    Full text link
    We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechanical Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR
    • …
    corecore