We derive an exact Markovian kinetic equation for an oscillator linearly
coupled to a heat bath, describing quantum Brownian motion. Our work is based
on the subdynamics formulation developed by Prigogine and collaborators. The
space of distribution functions is decomposed into independent subspaces that
remain invariant under Liouville dynamics. For integrable systems in
Poincar\'e's sense the invariant subspaces follow the dynamics of uncoupled,
renormalized particles. In contrast for non-integrable systems, the invariant
subspaces follow a dynamics with broken-time symmetry, involving generalized
functions. This result indicates that irreversibility and stochasticity are
exact properties of dynamics in generalized function spaces. We comment on the
relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.Comment: A few typos in the published version are correcte