50,931 research outputs found
Gate-tunable split Kondo effect in a carbon nanotube quantum dot
We show a detailed investigation of the split Kondo effect in a carbon
nanotube quantum dot with multiple gate electrodes. It is found that the
splitting decreases for increasing magnetic field, to result in a recovered
zero-bias Kondo resonance at finite magnetic field. Surprisingly, in the same
charge state, but under different gate-configurations, the splitting does not
disappear for any value of the magnetic field, but we observe an avoided
crossing of two high-conductance lines. We think that our observations can be
understood in terms of a two-impurity Kondo effect with two spins coupled
antiferromagnetically. The exchange coupling between the two spins can be
influenced by a local gate, and the non-recovery of the Kondo resonance for
certain gate configurations is explained by the existence of a small
antisymmetric contribution to the exchange interaction between the two spins.Comment: 12 pages, 4 figures, published versio
Species and temperature measurement in H2/O2 rocket flow fields by means of Raman scattering diagnostics
Validation of Computational Fluid Dynamics (CFD) codes developed for prediction and evaluation of rocket performance is hampered by a lack of experimental data. Non-intrusive laser based diagnostics are needed to provide spatially and temporally resolved gas dynamic and fluid dynamic measurements. This paper reports the first non-intrusive temperature and species measurements in the plume of a 110 N gaseous hydrogen/oxygen thruster at and below ambient pressures, obtained with spontaneous Raman spectroscopy. Measurements at 10 mm downstream of the exit plane are compared with predictions from a numerical solution of the axisymmetric Navier-Stokes and species transport equations with chemical kinetics, which fully model the combustor-nozzle-plume flowfield. The experimentally determined oxygen number density at the centerline at 10 mm downstream of the exit plane is four times that predicted by the model. The experimental number density data fall between those numerically predicted for the exit and 10 mm downstream planes in both magnitude and radial gradient. The predicted temperature levels are within 10 to 15 percent of measured values. Some of the discrepancies between experimental data and predictions result from not modeling the three dimensional core flow injection mixing process, facility back pressure effects, and possible diffuser-thruster interactions
Weiss oscillations in the electronic structure of modulated graphene
We present a theoretical study of the electronic structure of modulated
graphene in the presence of a perpendicular magnetic field. The density of
states and the bandwidth for the Dirac electrons in this system are determined.
The appearance of unusual Weiss oscillations in the bandwidth and density of
states is the main focus of this work.Comment: 8 pages, 2 figures, accepted in J. Phys.: Conden. mat
The core helium flash revisited: II. Two and three-dimensional hydrodynamic simulations
We study turbulent convection during the core helium flash close to its peak
by comparing the results of two and three-dimensional hydrodynamic simulations.
We use a multidimensional Eulerian hydrodynamics code based on
state-of-the-art numerical techniques to simulate the evolution of the helium
core of a Pop I star.
Our three-dimensional hydrodynamic simulations of the evolution of a star
during the peak of the core helium flash do not show any explosive behavior.
The convective flow patterns developing in the three-dimensional models are
structurally different from those of the corresponding two-dimensional models,
and the typical convective velocities are smaller than those found in their
two-dimensional counterparts. Three-dimensional models also tend to agree
better with the predictions of mixing length theory. Our hydrodynamic
simulations show the presence of turbulent entrainment that results in a growth
of the convection zone on a dynamic time scale. Contrary to mixing length
theory, the outer part of the convection zone is characterized by a
sub-adiabatic temperature gradient.Comment: 19 pages, 18 figure
On integrability of a (2+1)-dimensional perturbed Kdv equation
A (2+1)-dimensional perturbed KdV equation, recently introduced by W.X. Ma
and B. Fuchssteiner, is proven to pass the Painlev\'e test for integrability
well, and its 44 Lax pair with two spectral parameters is found. The
results show that the Painlev\'e classification of coupled KdV equations by A.
Karasu should be revised
Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov
The standard calculations of the ground-state energy of a homogeneous Bose
gas rely on approximations which are physically reasonable but difficult to
control. Lieb and Yngvason [Phys. Rev. Lett. 80, 2504 (1998)] have proved
rigorously that the commonly accepted leading order term of the ground state
energy is correct in the zero-density-limit. Here, strong indications are given
that also the next to leading term is correct. It is shown that the first terms
obtained in a perturbative treatment provide contributions which are lost in
the Bogoliubov approach.Comment: 6 pages, accepted for publication in Europhys. Lett.
http://www.epletters.ch
Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime
We investigate the magnetoresistance of epitaxially grown, heavily doped
n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean
free path (23 nm). The temperature dependence of the dissipative resistance
R_{xx} in the quantum Hall effect regime can be well described by a hopping law
(R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of
variable range hopping in a Coulomb gap together with a dependence of the
electron localization length on the energy in the gap. The value of the
exponent p>0.5 shows that electron-electron interactions have to be taken into
account in order to explain the occurrence of the quantum Hall effect in these
samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl
- …