159 research outputs found
Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions
Traditionally, the quantum Brownian motion is described by Fokker-Planck or
diffusion equations in terms of quasi-probability distribution functions, e.g.,
Wigner functions. These often become singular or negative in the full quantum
regime. In this paper a simple approach to non-Markovian theory of quantum
Brownian motion using {\it true probability distribution functions} is
presented. Based on an initial coherent state representation of the bath
oscillators and an equilibrium canonical distribution of the quantum mechanical
mean values of their co-ordinates and momenta we derive a generalized quantum
Langevin equation in -numbers and show that the latter is amenable to a
theoretical analysis in terms of the classical theory of non-Markovian
dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski
equations are the {\it exact} quantum analogues of their classical
counterparts. The present work is {\it independent} of path integral
techniques. The theory as developed here is a natural extension of its
classical version and is valid for arbitrary temperature and friction
(Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor
revision
Nano-Immunodetection and Quantification of Mycobacteria in Metalworking Fluids
The accurate detection and enumeration of mycobacteria in metalworking fluids (MWFs) is imperative from an environmental protection and occupational health perspective. We report here on a comparison of the labeling efficiency of nano-immunomagnetic particles (NIMP) and free antibody (FAb) to detect mycobacteria in semisynthetic MWF by using both traditional visualization analysis and cluster analysis aided visualization analysis (CAAVA). The NIMP labeling method involved coating nanometer-scale magnetic particles with Protein A, and oriented conjugation of polyclonal antibodies specific to Mycobacterium spp. The FAb labeling method is modified from the traditional immunofluorescence (IF) method for more efficient detection of mycobacteria in a model MWF. The labeling efficiency of NIMP and FAb were 7.2 ± 4.6 and 16.3 ± 5.5%, and the specificity 85.0 ± 6.1 and 88.1 ± 10.5%, respectively, based on traditional visualization analysis. Based on CAAVA analysis, the labeling efficiency of NIMP and FAb increased to 12.4 ± 1.6 and 20.5 ± 3.9%, and the specificity to 97.8 ± 3.2 and 98.5 ± 2.5%, respectively. A linear relationship of FCM counts and seeded concentrations was observed over four orders of magnitude (R 2 ≤ 0.99) in pure and ternary cultures. The results strongly support the applicability of either FAb or NIMP coupled with CAAVA and flow cytometry for rapid detection and enumeration of mycobacteria in complex matrices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63114/1/ees.2007.24.58.pd
Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury
Neutrophil gelatinase-associated lipocalin (Ngal), also known as siderocalin, forms a complex with iron-binding siderophores (Ngal:siderophore:Fe). This complex converts renal progenitors into epithelial tubules. In this study, we tested the hypothesis that Ngal:siderophore:Fe protects adult kidney epithelial cells or accelerates their recovery from damage. Using a mouse model of severe renal failure, ischemia-reperfusion injury, we show that a single dose of Ngal (10 microg), introduced during the initial phase of the disease, dramatically protects the kidney and mitigates azotemia. Ngal activity depends on delivery of the protein and its siderophore to the proximal tubule. Iron must also be delivered, since blockade of the siderophore with gallium inhibits the rescue from ischemia. The Ngal:siderophore:Fe complex upregulates heme oxygenase-1, a protective enzyme, preserves proximal tubule N-cadherin, and inhibits cell death. Because mouse urine contains an Ngal-dependent siderophore-like activity, endogenous Ngal might also play a protective role. Indeed, Ngal is highly accumulated in the human kidney cortical tubules and in the blood and urine after nephrotoxic and ischemic injury. We reveal what we believe to be a novel pathway of iron traffic that is activated in human and mouse renal diseases, and it provides a unique method for their treatment
Concentrações plasmáticas de triptamina, tiramina e feniletilamina em eqüinos sob efeitos de sobrecarga de carboidratos e antiinflamatórios não esteroidais
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Effects of sublethal concentrations of tobacco (Nicotiana tobaccum) leaf dust on some biochemical parameters of Hybrid catfish (Clarias gariepinus and Heterobranchus bidorsalis)
- …
