783 research outputs found
Generation of mesoscopic superpositions of a binary Bose-Einstein condensate in a slightly asymmetric double well
A previous publication [Europhysics Letters 78, 10009 (2007)] suggested to
coherently generate mesoscopic superpositions of a two-component Bose-Einstein
condensate in a double well under perfectly symmetric conditions. However,
already tiny asymmetries can destroy the entanglement properties of the ground
state. Nevertheless, even under more realistic conditions, the scheme is
demonstrated numerically to generate mesoscopic superpositions.Comment: 5 pages, 4 figures, preprint-versio
Preceding rule induction with instance reduction methods
A new prepruning technique for rule induction is presented which applies instance reduction before rule induction. An empirical evaluation records the predictive accuracy and size of rule-sets generated from 24 datasets from the UCI Machine Learning Repository. Three instance reduction algorithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each one is used to reduce the size of the training set, prior to inducing a set of rules using Clark and Boswell's modification of CN2. A hybrid instance reduction algorithm (comprised of AllKnn and DROP5) is also tested. For most of the datasets, pruning the training set using ENN, AllKnn or the hybrid significantly reduces the number of rules generated by CN2, without adversely affecting the predictive performance. The hybrid achieves the highest average predictive accuracy
Predictive value of apoptosis, proliferation, HER-2, and topoisomerase IIalpha for anthracycline chemotherapy in locally advanced breast cancer
Purpose. Laboratory evidence indicates that tumor growth depends on the balance between cell proliferation and cell death, and many anticancer agents may exert their therapeutic effect by decreasing proliferation and increasing apoptosis. Additionally, clinical observations indicate that overexpression of HER-2 or topoisomerase II alpha ( topo II alpha) may be predictors of better response to anthracyclines in breast cancer. The objective of this study was to determine if proliferation ( Ki-67), apoptosis ( TUNEL), and expression of HER-2 and topo II alpha are affected by anthracycline treatment, and if these molecular markers predict anthracycline responsiveness. Experimental design. Thirty-three women with primary breast tumors >= 3 cm received either doxorubicin ( 75 mg/ m(2)) or epirubicin ( 120 mg/ m(2)) for 4 cycles before surgery. Clinical response was evaluated after 4 cycles of treatment. Changes in molecular markers were assessed from core needle biopsy taken before treatment (D0), at 24 - 48 h (Dl) and on day 7 (D7) while on treatment, and from the surgical specimen excised on day 84 (D84) after the fourth cycle of chemotherapy. Results. The overall clinical response rate was 51% (17 of 33 patients), with a 12% complete clinical response rate ( 4 of 33 patients). There were trends for tumors with higher apoptosis and topo IIa at baseline ( D0) to be more responsive to anthracyclines, p = 0.1 and p = 0.08, respectively. Median apoptosis increased from D0 to Dl ( p = 0.06) while median Ki-67 decreased ( p = 0.07). Overall, expression of HER-2 remained stable throughout the chemotherapy administration. By Day 84, topo II alpha had significantly decreased from baseline in responders, while it increased in non-responders, p = 0.03. Conclusions. In human primary breast cancer, anthracycline treatment causes an early increase in apoptosis and a decrease in proliferation. In this pilot study, higher apoptosis and topo II alpha a levels in primary tumors were associated with greater responsiveness to anthracyclines, and topo II alpha levels declined in responsive tumors
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings
A recently found metal-insulator transition in a model for cyclotron
resonance in a two-dimensional periodic potential is investigated by means of
spectral properties of the time evolution operator. The previously found
dynamical signatures of the transition are explained in terms of avoided band
crossings due to the change of the external electric field. The occurrence of a
cross-like transport is predicted and numerically confirmed
Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots
We develop a semiclassical theory of Coulomb blockade peak heights in chaotic
quantum dots. Using Berry's conjecture, we calculate the peak height
distributions and the correlation functions. We demonstrate that the
corrections to the corresponding results of the standard statistical theory are
non-universal and can be expressed in terms of the classical periodic orbits of
the dot that are well coupled to the leads. The main effect is an oscillatory
dependence of the peak heights on any parameter which is varied; it is
substantial for both symmetric and asymmetric lead placement. Surprisingly,
these dynamical effects do not influence the full distribution of peak heights,
but are clearly seen in the correlation function or power spectrum. For
non-zero temperature, the correlation function obtained theoretically is in
good agreement with that measured experimentally.Comment: 5 color eps figure
Effects of the field modulation on the Hofstadter's spectrum
We study the effect of spatially modulated magnetic fields on the energy
spectrum of a two-dimensional (2D) Bloch electron. Taking into account four
kinds of modulated fields and using the method of direct diagonalization of the
Hamiltonian matrix, we calculate energy spectra with varying system parameters
(i.e., the kind of the modulation, the relative strength of the modulated field
to the uniform background field, and the period of the modulation) to elucidate
that the energy band structure sensitively depends on such parameters:
Inclusion of spatially modulated fields into a uniform field leads occurrence
of gap opening, gap closing, band crossing, and band broadening, resulting
distinctive energy band structure from the Hofstadter's spectrum. We also
discuss the effect of the field modulation on the symmetries appeared in the
Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables
Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises
Dynamics of an ensemble of -unit FitzHugh-Nagumo (FN) neurons subject to
white noises has been studied by using a semi-analytical dynamical mean-field
(DMF) theory in which the original -dimensional {\it stochastic}
differential equations are replaced by 8-dimensional {\it deterministic}
differential equations expressed in terms of moments of local and global
variables. Our DMF theory, which assumes weak noises and the Gaussian
distribution of state variables, goes beyond weak couplings among constituent
neurons. By using the expression for the firing probability due to an applied
single spike, we have discussed effects of noises, synaptic couplings and the
size of the ensemble on the spike timing precision, which is shown to be
improved by increasing the size of the neuron ensemble, even when there are no
couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. DMF theory is
extended to a large cluster which can be divided into multiple sub-clusters
according to their functions. A model calculation has shown that when the noise
intensity is moderate, the spike propagation with a fairly precise timing is
possible among noisy sub-clusters with feed-forward couplings, as in the
synfire chain. Results calculated by our DMF theory are nicely compared to
those obtained by direct simulations. A comparison of DMF theory with the
conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe
Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.
- …
