484 research outputs found
Potentiating effect of heparin in the activation of procollagenase by a low-Mr angiogenesis factor
AbstractA low-Mr freely dialysable endothelial cell-stimulating angiogenesis factor (ESAF) from conditioned medium of a mouse lymphoma cell line has previously been shown to activate latent skin fibroblast procollagenase. Activation comparable with the maximum that can be achieved with trypsin is obtained with chemically undetectable amounts of the factor. We now show that when even smaller amounts of ESAF are used heparin is able to potentiate its action in this system. The relationship between this activity and the mechanism of angiogenesis, which is itself potentiated by heparin, is discussed
Generating Mesoscopic Bell States via Collisions of Distinguishable Quantum Bright Solitons
We investigate numerically the collisions of two distinguishable quantum matter-wave bright solitons in a one-dimensional harmonic trap. We show that such collisions can be used to generate mesoscopic Bell states that can reliably be distinguished from statistical mixtures. Calculation of the relevant s-wave scattering lengths predicts that such states could potentially be realized in quantum-degenerate mixtures of Rb85 and Cs133. In addition to fully quantum simulations for two distinguishable two-particle solitons, we use a mean-field description supplemented by a stochastic treatment of quantum fluctuations in the soliton’s center of mass: we demonstrate the validity of this approach by comparison to a mathematically rigorous effective potential treatment of the quantum many-particle problem
The non-linear Schr\"odinger equation and the conformal properties of non-relativistic space-time
The cubic non-linear Schr\"odinger equation where the coefficient of the
nonlinear term is a function only passes the Painlev\'e test of Weiss,
Tabor, and Carnevale only for , where and are constants.
This is explained by transforming the time-dependent system into the
constant-coefficient NLS by means of a time-dependent non-linear
transformation, related to the conformal properties of non-relativistic
space-time. A similar argument explains the integrability of the NLS in a
uniform force field or in an oscillator background.Comment: Thoroughly revised version, in the light of new interest in
non-relativistic conformal tranformation, with a new reference list. 8 pages,
LaTex, no figures. To be published in Int. J. Theor. Phy
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Deconfinement Transition for Quarks on a Line
We examine the statistical mechanics of a 1-dimensional gas of both adjoint
and fundamental representation quarks which interact with each other through
1+1-dimensional U(N) gauge fields. Using large-N expansion we show that, when
the density of fundamental quarks is small, there is a first order phase
transition at a critical temperature and adjoint quark density which can be
interpreted as deconfinement. When the fundamental quark density is comparable
to the adjoint quark density, the phase transition becomes a third order one.
We formulate a way to distinguish the phases by considering the expectation
values of high winding number Polyakov loop operators.Comment: Reported problems with figures fixed; 38 pages, LaTeX, 5 figures,
epsfi
An intermediate-depth source of hydrothermal 3He and dissolved iron in the North Pacific
We observed large water column anomalies in helium isotopes and trace metal concentrations above the Loihi Seamount. The 3He/4He of the added helium was 27.3 times the atmospheric ratio, clearly marking its origin to a primitive mantle plume. The dissolved iron to 3He ratio (dFe:3He) exported to surrounding waters was 9.3 ± 0.3 × 106. We observed the Loihi 3He and dFe “signal” at a depth of 1100 m at several stations within ∼100 – 1000 km of Loihi, which exhibited a distal dFe:3He ratio of ∼4 × 106, about half the proximal ratio. These ratios were remarkably similar to those observed over and near the Southern East Pacific Rise (SEPR) despite greatly contrasting geochemical and volcanictectonic origins. In contrast, the proximal and distal dMn:3He ratios were both ∼ 1 × 106, less than half of that observed at the SEPR. Dissolved methane was minimally enriched in waters above Loihi Seamount and was distally absent. Using an idealized regional-scale model we replicated the historically observed regional 3He distribution, requiring a hydrothermal 3He source from Loihi of 10.4 ± 4.2 mola−1, ∼2% of the global abyssal hydrothermal 3He flux. From this we compute a corresponding dFe flux of ∼40 Mmola−1. Global circulation model simulations suggest that the Loihi-influenced waters eventually upwell along the west coast of North America, also extending into the shallow northwest Pacific, making it a possibly important determinant of marine primary production in the subpolar North Pacific
Kinetic theory of point vortices: diffusion coefficient and systematic drift
We develop a kinetic theory for point vortices in two-dimensional
hydrodynamics. Using standard projection operator technics, we derive a
Fokker-Planck equation describing the relaxation of a ``test'' vortex in a bath
of ``field'' vortices at statistical equilibrium. The relaxation is due to the
combined effect of a diffusion and a drift. The drift is shown to be
responsible for the organization of point vortices at negative temperatures. A
description that goes beyond the thermal bath approximation is attempted. A new
kinetic equation is obtained which respects all conservation laws of the point
vortex system and satisfies a H-theorem. Close to equilibrium this equation
reduces to the ordinary Fokker-Planck equation.Comment: 50 pages. To appear in Phys. Rev.
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages.
CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen
Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes.
We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
- …