28,799 research outputs found

    Universal Power-law Decay in Hamiltonian Systems?

    Full text link
    The understanding of the asymptotic decay of correlations and of the distribution of Poincar\'e recurrence times P(t)P(t) has been a major challenge in the field of Hamiltonian chaos for more than two decades. In a recent Letter, Chirikov and Shepelyansky claimed the universal decay P(t)t3P(t) \sim t^{-3} for Hamiltonian systems. Their reasoning is based on renormalization arguments and numerical findings for the sticking of chaotic trajectories near a critical golden torus in the standard map. We performed extensive numerics and find clear deviations from the predicted asymptotic exponent of the decay of P(t)P(t). We thereby demonstrate that even in the supposedly simple case, when a critical golden torus is present, the fundamental question of asymptotic statistics in Hamiltonian systems remains unsolved.Comment: Phys. Rev. Lett., in pres

    Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing

    Get PDF
    Laser Interferometer Gravitational-Wave Observatory (LIGO) is a joint project of the California Institute of Technology and the Massachusetts Institute of Technology funded by the National Science Foundation. The project is designed to detect gravitational waves from astrophysical sources such as supernova and black holes. The LIGO project constructed observatories at two sites in the U.S. Each site includes two beam tubes (each 4 km long) joined to form an "L" shape. The beam tube is a 1.25 m diam 304 L stainless steel, ultrahigh vacuum tube that will operate at 1×10^–9 Torr or better. The beam tube was manufactured using a custom spiral weld tube mill from material processed to reduce the outgassing rate in order to minimize pumping costs. The integrity of the beam tube was assured by helium mass spectrometer leak testing each component of the beam tube system prior to installation. Each 2 km long, isolatable beam tube module was then leak tested after completion

    Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone

    Get PDF
    We perform idealized numerical simulations of magnetic buoyancy instabilities in three dimensions, solving the equations of compressible magnetohydrodynamics in a model of the solar tachocline. In particular, we study the effects of including a highly simplified model of magnetic flux pumping in an upper layer (‘the convection zone’) on magnetic buoyancy instabilities in a lower layer (‘the upper parts of the radiative interior – including the tachocline’), to study these competing flux transport mechanisms at the base of the convection zone. The results of the inclusion of this effect in numerical simulations of the buoyancy instability of both a preconceived magnetic slab and a shear-generated magnetic layer are presented. In the former, we find that if we are in the regime that the downward pumping velocity is comparable with the Alfvén speed of the magnetic layer, magnetic flux pumping is able to hold back the bulk of the magnetic field, with only small pockets of strong field able to rise into the upper layer. In simulations in which the magnetic layer is generated by shear, we find that the shear velocity is not necessarily required to exceed that of the pumping (therefore the kinetic energy of the shear is not required to exceed that of the overlying convection) for strong localized pockets of magnetic field to be produced which can rise into the upper layer. This is because magnetic flux pumping acts to store the field below the interface, allowing it to be amplified both by the shear and by vortical fluid motions, until pockets of field can achieve sufficient strength to rise into the upper layer. In addition, we find that the interface between the two layers is a natural location for the production of strong vertical gradients in the magnetic field. If these gradients are sufficiently strong to allow the development of magnetic buoyancy instabilities, strong shear is not necessarily required to drive them (cf. previous work by Vasil & Brummell). We find that the addition of magnetic flux pumping appears to be able to assist shear-driven magnetic buoyancy in producing strong flux concentrations that can rise up into the convection zone from the radiative interior

    Light scattering from a periodically modulated two dimensional electron gas with partially filled Landau levels

    Get PDF
    We study light scattering from a periodically modulated two dimensional electron gas in a perpendicular magnetic field. If a subband is partially filled, the imaginary part of the dielectric function as a function of frequency contains additional discontinuities to the case of completely filled subbands. The positions of the discontinuities may be determined from the partial filling factor and the height of the discontinuity can be directly related to the modulation potential. The light scattering cross section contains a new peak which is absent for integer filling.Comment: RevTex, 4 figures. To appear in Phys. Rev. B as a brief repor

    Procjena povratka investicija za predloženo rabljenje solarnih sustava u Poljskoj

    Get PDF
    This paper focuses on the assessment of possibilities to subsidize the purchase and installation of solar collectors in Poland by government or local government grants and special funds designed for this purpose. It analysis of costs and profits resulting from the application of solar installations in the process of heat generation for household requirements, by calculating the payback time, with taking into account prices of other energy carriers and the above mentioned subsidies. Collectors at present are manufactured solely from metals (copper, aluminium, Al-Mg alloys). The use of these materials is tied to considerable energy demand and the production technology is complex. This affects the economy of running a solar device.Članak je usmjeren na procjenu mogućnosti novčane potpore nabavke instalacija solarnih kolektora u Poljskoj od vlade ili lokalnih pokrovitelja te posebni fondovi utemeljeni u tu svrhu. Analizirani su troškovi i dobit kao rezultat primjene solarnih instalacija u procesima zagrijavanja po zahtjevima, proračuna povratka investicije, uzimajući u obzir cijene računa ostalih, tj. više drugih usporednih energija. Sadašnji kolektori ustrojeni su od metala (bakra, aluminija, Al-Mg legure). Rabljenje ovih materijala je u svezi energetskim zahtjevima i proizvodnom tehnologijom. Utjecaji ekonomije ovisni su o solarnim uređajima
    corecore