209 research outputs found

    The Long Road: An Analysis of the 1557 Book of Mirrors by Seydi Ali Reis

    Full text link
    In 1552, Piri Reis was relieved from the Admiralty of the Ottoman Imperial Navy. Seydi Ali Reis was appointed to replace him and his assignment was to return fifteen galleys from Basra to Egypt. This should have been a relatively short journey. Seydi failed miserably, however. He lost most of the ships in battle with the Portuguese and bad weather, which he documents in his travelogue The Mirror of Countries. With nowhere left to turn, he sold the remaining ships in Surat on the west coast of India. To make matters worse, he took the long road home to Istanbul: a circuitous route which stretched his journey for two years. This path went as far north as Samarqand in modern Uzbekistan. The question which arises is why did Seydi take so long to return home

    Small-conductance Ca2+-activated K+ channels promote J-wave syndrome and phase-2 reentry

    Get PDF
    Background: Small-conductance Ca2+-activated potassium (SK) channels play complex roles in cardiac arrhythmogenesis. SK channels colocalize with L-type Ca2+ channels, yet how this colocalization affects cardiac arrhythmogenesis is unknown. Objective: The purpose of this study was to investigate the role of colocalization of SK channels with L-type Ca2+ channels in promoting J-wave syndrome and ventricular arrhythmias. Methods: We carried out computer simulations of single-cell and tissue models. SK channels in the model were assigned to preferentially sense Ca2+ in the bulk cytosol, subsarcolemmal space, or junctional cleft. Results: When SK channels sense Ca2+ in the bulk cytosol, the SK current (ISK) rises and decays slowly during an action potential, the action potential duration (APD) decreases as the maximum conductance increases, no complex APD dynamics and phase 2 reentry can be induced by ISK. When SK channels sense Ca2+ in the subsarcolemmal space or junctional cleft, ISK can rise and decay rapidly during an action potential in a spike-like pattern because of spiky Ca2+ transients in these compartments, which can cause spike-and-dome action potential morphology, APD alternans, J-wave elevation, and phase 2 reentry. Our results can account for the experimental finding that activation of ISK induced J-wave syndrome and phase 2 reentry in rabbit hearts. Conclusion: Colocalization of SK channels with L-type Ca2+ channels so that they preferentially sense Ca2+ in the subsarcolemmal or junctional space may result in a spiky ISK, which can functionally play a similar role of the transient outward K+ current in promoting J-wave syndrome and ventricular arrhythmias

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    Association between XPF Polymorphisms and Cancer Risk: A Meta-Analysis

    Get PDF
    Background: Xeroderma pigmentosum complementation group F (XPF or ERCC4) plays a key role in DNA repair that protects against genetic instability and carcinogenesis. A series of epidemiological studies have examined associations between XPF polymorphisms and cancer risk, but the findings remain inconclusive. Methodology/Principal Findings: In this meta-analysis of 47,639 cancer cases and 51,915 controls, by searching three electronic databases (i.e., MEDLINE, EMBASE and CNKI), we summarized 43 case-control studies from 29 publications on four commonly studied polymorphisms of XPF (i.e., rs1800067, rs1799801, rs2020955 and rs744154), and we did not find statistical evidence of any significant association with overall cancer risk. However, in stratification analyses, we found a significant association of XPF-rs1799801 with a reduced cancer risk in Caucasian populations (4,845 cases and 5,556 controls; recessive model: OR = 0.87, 95% CI = 0.76–1.00, P = 0.049, P = 0.723 for heterogeneity test, I2 = 0). Further genotype-phenotype correlation analysis showed that the homozygous variant CC genotype carriers had higher XPF expression levels than that of the TT genotype carriers (Student’s t test for a recessive model: P = 0.046). No publication bias was found by using the funnel plot and Egger’s test. Conclusion: This meta-analysis suggests a lack of statistical evidence for the association between the four XPF SNPs and overall risk of cancers. However, XPF-rs1799801 may be associated with cancer risk in Caucasian populations, which needs to be further validated in single large, well-designed prospective studies

    A second planet transiting LTT 1445A and a determination of the masses of both worlds

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.LTT 1445 is a hierarchical triple M-dwarf star system located at a distance of 6.86 pc. The primary star LTT 1445A (0.257 M⊙) is known to host the transiting planet LTT 1445Ab with an orbital period of 5.36 days, making it the second-closest known transiting exoplanet system, and the closest one for which the host is an M dwarf. Using Transiting Exoplanet Survey Satellite data, we present the discovery of a second planet in the LTT 1445 system, with an orbital period of 3.12 days. We combine radial-velocity measurements obtained from the five spectrographs, Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, High Accuracy Radial Velocity Planet Searcher, High-Resolution Echelle Spectrometer, MAROON-X, and Planet Finder Spectrograph to establish that the new world also orbits LTT 1445A. We determine the mass and radius of LTT 1445Ab to be 2.87 ± 0.25 M⊕ and 1.304-0.060+0.067 R⊕, consistent with an Earth-like composition. For the newly discovered LTT 1445Ac, we measure a mass of 1.54-0.19+0.20 M⊕ and a minimum radius of 1.15 R⊕, but we cannot determine the radius directly as the signal-to-noise ratio of our light curve permits both grazing and nongrazing configurations. Using MEarth photometry and ground-based spectroscopy, we establish that star C (0.161 M⊙) is likely the source of the 1.4 day rotation period, and star B (0.215 M⊙) has a likely rotation period of 6.7 days. We estimate a probable rotation period of 85 days for LTT 1445A. Thus, this triple M-dwarf system appears to be in a special evolutionary stage where the most massive M dwarf has spun down, the intermediate mass M dwarf is in the process of spinning down, while the least massive stellar component has not yet begun to spin down.Publisher PDFPeer reviewe

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    corecore