1,720 research outputs found

    Reaction-diffusion wave fronts on comblike structures

    Get PDF
    From the Hamilton-Jacobi formalism, an explicit expression for the speed of wave front propagation along the backbone of comblike structures is obtained. This expression, through the waiting-time distribution function, takes into account the number of sites and their distribution in the secondary branches. Our theoretical results are supported by numerical simulations of the reaction random-walk process on the structure. Finally, a more complex situation such as the Peano basin structure is also considered, both theoretically and numerically, exhibiting a good agreement too

    Learning Across Senses: Cross-Modal Effects in Multisensory Statistical Learning

    Get PDF
    It is currently unknown whether statistical learning is supported by modality-general or modality-specific mechanisms. One issue within this debate concerns the independence of learning in one modality from learning in other modalities. In the present study, the authors examined the extent to which statistical learning across modalities is independent by simultaneously presenting learners with auditory and visual streams. After establishing baseline rates of learning for each stream independently, they systematically varied the amount of audiovisual correspondence across 3 experiments. They found that learners were able to segment both streams successfully only when the boundaries of the audio and visual triplets were in alignment. This pattern of results suggests that learners are able to extract multiple statistical regularities across modalities provided that there is some degree of cross-modal coherence. They discuss the implications of their results in light of recent claims that multisensory statistical learning is guided by modality-independent mechanisms

    disaggregation: An R Package for Bayesian Spatial Disaggregation Modeling

    Get PDF
    Disaggregation modeling, or downscaling, has become an important discipline in epidemiology. Surveillance data, aggregated over large regions, is becoming more common, leading to an increasing demand for modeling frameworks that can deal with this data to understand spatial patterns. Disaggregation regression models use response data aggregated over large heterogeneous regions to make predictions at fine-scale over the region by using fine-scale covariates to inform the heterogeneity. This paper presents the R package disaggregation, which provides functionality to streamline the process of running a disaggregation model for fine-scale predictions

    Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems

    Full text link
    Decoherence-free subspaces (DFSs) provide a strategy for protecting the dynamics of an open system from decoherence induced by the system-environment interaction. So far, DFSs have been primarily studied in the framework of Markovian master equations. In this work, we study decoherence-free (DF) states in the general setting of a non-Markovian fermionic environment. We identify the DF states by diagonalizing the non-unitary evolution operator for a two-level fermionic system attached to an electron reservoir. By solving the exact master equation, we show that DF states can be stabilized dynamically.Comment: 11 pages, 3 figures. Any comments are welcom

    Quantum Noise Limits for Nonlinear, Phase-Invariant Amplifiers

    Full text link
    Any quantum device that amplifies coherent states of a field while preserving their phase generates noise. A nonlinear, phase-invariant amplifier may generate less noise, over a range of input field strengths, than any linear amplifier with the same amplification. We present explicit examples of such nonlinear amplifiers, and derive lower bounds on the noise generated by a nonlinear, phase-invariant quantum amplifier.Comment: RevTeX, 6 pages + 4 figures (included in file; hard copy sent on request

    Biventricular adaptation to volume overload in mice with aortic regurgitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aortic valve regurgitation is usually caused by impaired coaptation of the aortic valve cusps during diastole. Hypercholesterolemia produces aortic valve lipid deposition, fibrosis, and calcification in both mice and humans, which could impair coaptation of cusps. However, a link between hypercholesterolemia and aortic regurgitation has not been established in either species. The purpose of this study was to ascertain the prevalence of aortic regurgitation in hypercholesterolemic mice and to determine its impact on the left and right ventricles.</p> <p>Methods and Results</p> <p>Eighty <it>Ldlr</it><sup>-/-</sup>/<it>Apob</it><sup>100/100</sup>/<it>Mttp</it><sup>fl/fl</sup>/Mx1Cre<sup>+/+ </sup>("Reversa") hypercholesterolemic mice and 40 control mice were screened for aortic regurgitation (AR) with magnetic resonance imaging at age 7.5 months. The prevalence of AR was 40% in Reversa mice, with moderate or severe regurgitation (AR<sup>+</sup>) in 19% of mice. In control mice, AR prevalence was 13% (p = 0.004 <it>vs</it>. Reversa), and was invariably trace or mild in severity. In-depth evaluation of cardiac response to volume overload was performed in 12 AR-positive and 12 AR-negative Reversa mice. Regurgitant fraction was 0.34 ± 0.04 in AR-positive <it>vs</it>. 0.02 ± 0.01 in AR-negative (mean ± SE; p < 0.001). AR-positive mice had significantly increased left ventricular end-diastolic volume and mass and reduced ejection fraction in both ventricles. When left ventricular ejection fraction fell below 0.60 in AR-positive (<it>n </it>= 7) mice, remodeling occurred and right ventricular systolic function progressively worsened.</p> <p>Conclusion</p> <p>Hypercholesterolemia causes aortic valve regurgitation with moderate prevalence in mice. When present, aortic valve regurgitation causes volume overload and pathological remodeling of both ventricles.</p

    Effects of deep sedation or general anesthesia on cardiac function in mice undergoing cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically engineered mouse models of human cardiovascular disease provide an opportunity to understand critical pathophysiological mechanisms. Cardiovascular magnetic resonance (CMR) provides precise reproducible assessment of cardiac structure and function, but, in contrast to echocardiography, requires that the animal be immobilized during image acquisition. General anesthetic regimens yield satisfactory images, but have the potential to significantly perturb cardiac function. The purpose of this study was to assess the effects of general anesthesia and a new deep sedation regimen, respectively, on cardiac function in mice as determined by CMR, and to compare them to results obtained in mildly sedated conscious mice by echocardiography.</p> <p>Results</p> <p>In 6 mildly sedated normal conscious mice assessed by echo, heart rate was 615 ± 25 min<sup>-1 </sup>(mean ± SE) and left ventricular ejection fraction (LVEF) was 0.94 ± 0.01. In the CMR studies of normal mice, heart rate was slightly lower during deep sedation with morphine/midazolam (583 ± 30 min<sup>-1</sup>), but the difference was not statistically significant. General anesthesia with 1% inhaled isoflurane significantly depressed heart rate (468 ± 7 min<sup>-1</sup>, p < 0.05 vs. conscious sedation). In 6 additional mice with ischemic LV failure, trends in heart rate were similar, but not statistically significant. In normal mice, deep sedation depressed LVEF (0.79 ± 0.04, p < 0.05 compared to light sedation), but to a significantly lesser extent than general anesthesia (0.60 ± 0.04, p < 0.05 vs. deep sedation).</p> <p>In mice with ischemic LV failure, ejection fraction measurements were comparable when performed during light sedation, deep sedation, and general anesthesia, respectively. Contrast-to-noise ratios were similar during deep sedation and during general anesthesia, indicating comparable image quality. Left ventricular mass measurements made by CMR during deep sedation were nearly identical to those made during general anesthesia (r<sup>2 </sup>= 0.99, mean absolute difference < 4%), indicating equivalent quantitative accuracy obtained with the two methods. The imaging procedures were well-tolerated in all mice.</p> <p>Conclusion</p> <p>In mice with normal cardiac function, CMR during deep sedation causes significantly less depression of heart rate and ejection fraction than imaging during general anesthesia with isoflurane. In mice with heart failure, the sedation/anesthesia regimen had no clear impact on cardiac function. Deep sedation and general anesthesia produced CMR with comparable image quality and quantitative accuracy.</p
    • …
    corecore