
JSS Journal of Statistical Software
April 2023, Volume 106, Issue 11. doi: 10.18637/jss.v106.i11

disaggregation: An R Package for Bayesian Spatial
Disaggregation Modeling

Anita K. Nandi
University of Oxford

Tim C. D. Lucas
University of Oxford

Rohan Arambepola
University of Oxford

Peter Gething
Telethon Kids Institute

Curtin University

Daniel J. Weiss
University of Oxford

Abstract

Disaggregation modeling, or downscaling, has become an important discipline in epi-
demiology. Surveillance data, aggregated over large regions, is becoming more common,
leading to an increasing demand for modeling frameworks that can deal with this data to
understand spatial patterns. Disaggregation regression models use response data aggre-
gated over large heterogeneous regions to make predictions at fine-scale over the region by
using fine-scale covariates to inform the heterogeneity. This paper presents the R package
disaggregation, which provides functionality to streamline the process of running a disag-
gregation model for fine-scale predictions.

Keywords: Bayesian spatial modeling, disaggregation modeling, TMB.

1. Introduction

Methods for estimating high-resolution risk maps from aggregated response data over large
spatial regions are becoming increasingly sought after in disease risk mapping (Li, Brown,
Gesink, and Rue 2012; Diggle, Moraga, Rowlingson, and Taylor 2013; Wilson and Wakefield
2018), especially in malaria mapping (Sturrock et al. 2014; Sturrock, Bennett, Midekisa,
Gosling, Gething, and Greenhouse 2016). Disaggregation regression, first applied in species
distribution modeling in ecology (Keil, Belmaker, Wilson, Unitt, and Jetz 2013) has now
become an important method in disease risk mapping (Weiss et al. 2019; Battle et al. 2019).
The aggregation of response data over large heterogeneous regions is problematic for making

https://doi.org/10.18637/jss.v106.i11
https://orcid.org/0000-0002-5087-2494
https://orcid.org/0000-0003-4694-8107
https://orcid.org/0000-0003-2833-8786
https://orcid.org/0000-0001-6759-5449

2 disaggregation: Bayesian Spatial Disaggregation Modeling in R

fine-scale predictions, as relationships learned between variables at one spatial scale may not
hold at other scales (Wakefield and Shaddick 2006). However, by using fine-scale information
from related covariates we can inform the heterogeneity of the response variable of interest
within the aggregated area.
Disaggregation modeling is unorthodox as the predictions are at a different scale to the re-
sponse data, i.e., the number of rows in the covariate data is different to that of the response
data. The spatial modeling software package, INLA (Rue, Martino, and Chopin 2009), or
integrated nested Laplace approximation, has been shown to be very useful in a wide variety
of circumstances, however it is not flexible enough for the unorthodox nature of the disaggre-
gation problem except in the special case of the linear link function (Wilson and Wakefield
2018; Moraga, Cramb, Mengersen, and Pagano 2017). Disaggregation models can be im-
plemented in TMB (Kristensen, Nielsen, Berg, Skaug, and Bell 2016), or template model
builder, with a lot of flexibility, however the data manipulation required to format the model
objects and construct the model definition in C++ (Stroustrup 2013) is non-trivial. The
disaggregation package allows this process to be streamlined, to make it easy for the user to
run disaggregation models at the expense of some flexibility.

2. Disaggregation modeling
Suppose we have response data, yi, for N polygons, which corresponds to count data for
the property of interest within that polygon. The process that is being counted occurs in
continuous space that we model as a high-resolution, square lattice for convenience. The
data, yi, are assumed to be created by the aggregation of the counts over the polygon, i.e.,
the count data of the polygon is given by the sum of the count data for all the pixels within
that polygon. An aggregation raster must be provided to transform from the pixel level
predictions (rate) to count data, from which it is trivial to calculate the corresponding polygon
value by summing up the values for the individual pixels within the polygon. For example,
in epidemiology, we may have as our response the number of people that contract a certain
disease in a given period of time (case incidence). Our rate would be the number of cases
per population, where the aggregation raster corresponds to population. The case generating
process is modeled at the pixel level, with these processes then aggregated to obtain the
likelihood for the aggregated observed data.
For the disaggregation model we model the rate at pixel level, with the likelihood for the
observed data given by aggregating these pixel level rates. The rate in pixel j of polygon i at
location sij is given by:

link(rateij) = β0 + βXij + GP(sij) + ui (1)

where β are regression coefficients, Xij are covariate values, GP is a Gaussian random field
and ui is a polygon-specific iid effect. The user-defined link function is typically log, identity
and logit for Poisson, normal and binomial likelihoods, respectively. The Gaussian random
field has a Matérn covariance function, defined by:

C(d) = σ2

Γ(ν)2ν−1 (κd)νKν(κd)

with two hyperparameters: ρ =
√

8ν
κ , the range of the field (beyond which correlation is <

0.1), and σ, the marginal standard deviation, relating to the magnitude of the variation in

Journal of Statistical Software 3

the field. The parameters ρ, σ and ν are very difficult to identify together, therefore we fix ν,
to be able to identify ρ and σ. The parameter ν is the smoothness and is fixed at 1, as it is
considered the more natural basic choice for two-dimensional (d = 2) models (Lindgren and
Rue 2015). If the application requires a higher level of smoothness, this can also be controlled
by larger values of ν, nevertheless it comes with a computational cost. The Gamma function
is given by Γ(ν) = (ν − 1)! and Kν is the modified Bessel function of the second kind.
As we are working in a Bayesian setting, each of the model parameters and hyperparameters
are given a prior, which is discussed later.
Incidence is modeled at the pixel level, and the response data exists as count data at the
polygon level. Therefore, to calculate the likelihood we must aggregate the pixel rate, via the
aggregation raster aij , to get the expected polygon count. This aggregation is defined by:

casesi =
Ni∑

j=1
aijrateij (2)

ratei = casesi∑Ni
j=1 aij

where Ni is the total number of pixels in polygon i. The different likelihoods correspond to
slightly different models (yi is the response count data):

• Poisson
yi | β0, βi, GP, ui ∼ Poisson(casesi)

• Gaussian
yi | β0, βi, GP, ui ∼ Normal(casesi, σi)

Here σi = σ
√∑

j a2
ij , where σ is the pixel-level dispersion (a parameter learnt by the

model).

• Binomial
yi | β0, βi, GP, ui ∼ Binomial(Mi, ratei)

In the example of disease mapping, Poisson or Gaussian likelihoods could be used when the
quantity observed, yi, is the total number of cases in a given polygon. The binomial model
could be used when yi is the prevalence of a disease in a sample of Mi people in the polygon.
The pixel predictions of incident rate are calculated from the fitted model parameters using
Equation 1.

2.1. Priors

For each of the model parameters and hyperparameters we specify priors. The regression
parameters and intercept are given Gaussian priors, where the default priors are β0 ∼ N(0, 2)
and βi ∼ N(0, 0.4). It is expected that some of the spatial variation can be described by the
covariates, and the Gaussian field can help describe the remaining spatial variation that is
missing from the covariate information. Therefore, the priors on the covariates can be set to
allow the covariates to explain some, but not all, of the variation in the response data. For
the Gaussian random field, penalized complexity priors are used, which are constructed to

4 disaggregation: Bayesian Spatial Disaggregation Modeling in R

penalize against deviating from the simpler base model, which in this case is a flat field, i.e.,
zero variance and infinite range (Fuglstad, Simpson, Lindgren, and Rue 2018). A penalized
complexity prior is placed on the scale and range parameters of the random field such that

P(ρ < ρmin) = ρprob

P(σ > σmax) = σprob

where the values ρmin, ρprob, σmax, σprob are set by the user. The default values for these
parameters within the package are driven by the nature of the data provided in the model.
The default prior for ρmin is set at a third of the spatial area covered by the polygons, and
ρprob is set at 0.1. The default prior for σmax is set to the standard deviation of the normalized
response data, and σprob is set at 0.1.
The joint penalized complexity prior, π, corresponding to a base model with infinite range
and zero variance (Fuglstad et al. 2018) is given by:

log (π(σ, ρ)) = log
(
λ̃1

)
+ log

(
λ̃2

)
− 2 log(ρ) − λ̃1

ρ
− λ̃2σ

where
λ̃1 = −ρmin log(ρprob) and λ̃2 = − log(σprob)

σmax

This prior shrinks the field towards a base model with zero variance and infinite range, in
other words regularizing towards a flatter field with smaller magnitude.
The polygon-specific effects u1, . . . , uN have Gaussian priors centered at 0 with standard
deviation σu (where the precision τu = 1/σ2

u). A penalized complexity prior is placed on
σu (Simpson, Rue, Riebler, Martins, and Sørbye 2017) such that

P (σu > σu, max) = σu, prob

where values σu, max and σu, prob are set by the user. The penalized complexity prior, πu,
corresponding to a base model with no polygon-specific effect (Simpson et al. 2017) is given
by:

log (π(λ)) = log
(

λ

2

)
− 3

2 log(τu) − λ
√

τu

where
λ = − log(σu, prob)

σu, max
and τu = 1

σ2
u

This prior shrinks towards a base model of no polygon-specific effect.
For models that use a Gaussian likelihood, a log gamma prior is set on the log of the precision,
log τu ∼ log Γ(shape = 1, rate = 5×10−5), to regularize the dispersion, σu, to take low values.
This is chosen to be consistent with the prior set by INLA for the dispersion of the normal
likelihood. We aim for consistency with INLA as INLA is one of the most commonly used
packages for Bayesian spatial modeling and due to the parallels in computation approach
such as the use of a Laplace approximation and the stochastic partial differential equation
approximation to the Gaussian random field.

Journal of Statistical Software 5

3. Implementation
The disaggregation package is built on template model builder (TMB, Kristensen et al. 2016),
which is a tool for flexibly building complex models based on C++. TMB combines the
packages CppAD (Bell 2012), for automatic differentiation in C++, Eigen (Guennebaud,
Jacob, Avery, Bachrach, Barthelemy et al. 2021), a C++ library for linear algebra, and
CHOLMOD (Chen, Davis, Hager, and Rajamanickam 2008), a package for efficient computa-
tion of sparse matrices. The use of these packages allows an efficient implementation of the au-
tomatic Laplace approximation (Skaug and Fournier 2006) with exact derivatives which gives
an approximation to the Bayesian posterior. TMB calculates first and second order derivatives
of the objective function using automatic differentiation (Griewank and Walther 2008).
TMB is a package which allows the user to define and fit latent variable models. The user
defines the objective function (typically the likelihood or posterior density function) in C++
and TMB then implements the Laplace approximation to integrate out random effects and
generates functions for evaluating the objective and gradient (via automatic differentiation).
These functions can then be passed to an optimizer (for maximum likelihood estimation or
to find the posterior maximum) or to a Markov chain Monte Carlo (MCMC) sampler in R (R
Core Team 2023). TMB can fit both frequentist and Bayesian models. In this case we have
chosen the Bayesian approach as it is most widely used in the spatial modeling community.
The disaggregation package contains a C++ function that defines the model and computes the
joint likelihood as a function of the parameters and the random effects, in the format expected
by TMB. The TMB package then calculates estimates of both parameters and random effects
using a Laplace approximation. Evaluation of the objective function and its derivatives is
performed via R.

3.1. Other implementations
The simplest method to disaggregate data from the polygon level to the high-resolution pixel
level is to simply apply the value given by the polygon across all pixels within that polygon.
This is the approach used by the rasterize function in the raster package, the fasterize
function in the fasterize package and st_interpolate_aw from the sf package (Hijmans
2023; Ross 2022; Pebesma 2018). Similarly, for time-series data there are functions such as
td in the tempdisagg package (Sax and Steiner 2023). These methods are not based on
a statistical model and cannot help estimate the heterogeneous distribution of the disease
within a polygon. Furthermore, these methods cannot make predictions outside of the area
for which polygon data is available.
A number of other implementations use statistical models to estimate high resolution disease
risk from aggregated disease data. To the best of our knowledge, these all only include
covariates at the polygon level rather than at the pixel level. The popular R package INLA can
perform disaggregation regression in the simplest case of a normal likelihood, an identity link
function and no high resolution covariates (Moraga et al. 2017; Lindgren and Rue 2015; Wilson
and Wakefield 2018). The SDALGCP package fits the model using Monte Carlo maximum
likelihood (Johnson, Diggle, and Giorgi 2019). It can only fit models with a Poisson likelihood
with covariates at the polygon level. Finally, the lgcp package uses a data augmentation
approach to fit models to aggregated data (Taylor, Davies, Rowlingson, and Diggle 2013).
This Monte Carlo data augmentation approach will be very slow for large areas or large
numbers of cases.

6 disaggregation: Bayesian Spatial Disaggregation Modeling in R

In this paper we compare our method to MCMC. MCMC methods involve constructing
Markov chains which (after a sufficient warm up period) produce samples from the desired
probability distribution. In high dimensional problems, these methods can be extremely slow
as many steps are needed to converge to and effectively sample from the target distribution.
This is particularly problematic when computing the likelihood is costly, as the likelihood is
typically evaluated at each step. In spatial settings with a Gaussian field, MCMC becomes
infeasible for disaggregation modeling. Our method presented in the paper leverages the
Laplace approximation to provide a much faster way of fitting disaggregation models.

4. Package usage
In this section we show how to use the disaggregation package using a dataset of aggregated
malaria case counts across Madagascar in 2016. Malaria is an infectious disease caused by
parasites of the Plasmodium group, transmitted by Anopheles mosquitoes. Malaria transmis-
sion is therefore closely related to mosquito and parasite development. Environmental factors
such as temperature, rainfall and elevation have been shown to have significant effects on
mosquito survival and development; in general mosquitoes favor warm, humid environments
with moderate rainfall. Therefore, such environmental covariates would be useful in a malaria
disaggregation model to inform fine-scale distributions. In this model we use the environmen-
tal covariates of mean land surface temperature (LST), elevation, and Enhanced Vegetation
Index (EVI), at a resolution of approximately 5 × 5 km2, to inform spatial heterogeneity in
malaria risk. These covariates are obtained from the Moderate Resolution Imaging Spec-
troradiometer (MODIS), which provides many measurements over the entire Earth’s surface
(https://modis.gsfc.nasa.gov/data/).
Malaria incidence rate is often given per thousand people per year given the term Annual
Parasite Index (API). In this case our pixel predictions correspond to malaria incidence rate,
so we use population to aggregate pixel incidence rate by summing the number of cases
(rate weighted by population). Raster surfaces of population for the years 2010 and 2015 at
a resolution of approximately 5 × 5 km2, were created using data from WorldPop (Tatem
2017) and from GPWv4 (NASA 2018) where WorldPop did not have values. The population
raster for 2016 was created by linear interpolation between 2010 and 2015 and extending out
to 2016. This interpolation method results in a small amount of uncertainty in population
raster, however this is expected to be negligible compared to the model uncertainty.
Covariate rasters or population rasters may be accompanied by significant uncertainty. There
is no robust way within the package to propagate this uncertainty. However, if the user were
able to sample from the covariate rasters and run many instances of the model, they could
estimate an overall uncertainty. Whether this is a good approximation of the true uncertainty
will depend on the specific use case.
The covariate rasters and aggregation raster provided must be of the same spatial scale and
must be spatially aligned. For spatially misaligned rasters, there are packages in R to align
rasters such as align_rasters in the gdalUtils package Greenberg and Mattiuzzi (2022).
The latest version of disaggregation should always be available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=disaggregation.
Run the following commands to install and load the package.

R> install.packages("disaggregation")

https://modis.gsfc.nasa.gov/data/
http://CRAN.R-project.org/package=disaggregation

Journal of Statistical Software 7

R> library("disaggregation")
R> set.seed(5)

We then read in the data to use in the disaggregation package. The shapefile function and
raster function are contained within the raster package, they are functions to read spatial
data and raster data respectively. These functions return objects of class
‘SpatialPolygonsDataFrame’ and ‘RasterLayer’ respectively. ‘SpatialPolygonsDataFrame’
is an R class that holds spatial data in the form of polygons with attributes, in this case the
attributes are number of malaria cases within the polygon and polygon ID. A ‘RasterLayer’
is an R class that holds a single raster. The function getCovariateRasters is a helper func-
tion contained within the disaggregation package. From a user defined directory name and
shapefile, all the raster files within that directory are read and a ‘RasterStack’ is created with
the same extent as the shapefile provided. In this example we are building a ‘RasterStack’
of the covariate rasters with the same extent as the population raster. A ‘RasterStack’ is a
collection of ‘RasterLayer’ objects with the same spatial extent and resolution.
The main functions are prepare_data, disag_model and predict.
Firstly, we use the prepare_data function to setup all the data in the format needed in the
disaggregation modeling. This function performs various data manipulation tasks to create
objects that are necessary for fitting the model. The required input data for the prepare_data
function are:

• polygon_shapefile: ‘SpatialPolygonsDataFrame’ containing the response data. It
must contain IDs and response data.

• covariate_raster: ‘RasterStack’ of covariates to be used in the model.

• aggregation_raster: ‘RasterLayer’ used as the weights to aggregate the pixel values
within a polygon.

• mesh.args: List of parameters to control the mesh used for the Gaussian Field compo-
nent.

• id_var: Variable name of the ID variable in the polygon_shapefile.

• response_var: Variable name of the response variable in the polygon_shapefile.

• na.action: Boolean, whether to deal with NAs or not.

• ncores: Number of cores to perform the parallel extraction over.

An optional aggregation raster can be provided. The aggregation raster defines how the pix-
els within each polygon are aggregated. The disaggregation model performs a weighted sum
of the pixel predictions, weighted by the pixel values in the aggregation raster, as shown in
Equation 2. In this case our pixel predictions are malaria incidence rate, so we use the popu-
lation raster to aggregate pixel incidence rate by summing the number of cases (rate weighted
by population). If no aggregation raster is provided a uniform distribution is assumed, i.e.,
the pixel predictions are aggregated to polygon level by summing the pixel values unaltered.
The values of the covariates (as well as the aggregation raster, if given) are extracted at each
pixel within the polygons and stored as a data.frame with a row for each pixel and a column

8 disaggregation: Bayesian Spatial Disaggregation Modeling in R

for each covariate (parallelExtract function). The extraction of each covariate is performed
in parallel over the number of cores defined by the argument ncores. The values extracted
from the aggregation raster are returned as an array of values, one for each pixel. In order to
know which pixels (i.e., which rows) are contained in each polygon, a matrix is constructed
that contains the start and end pixel index for each polygon (getStartendindex function).
To fit a model with a Gaussian field we approximate a Gaussian field using Gaussian Markov
random fields (GMRF), and solve using the stochastic partial differential equation (SPDE)
approach (Lindgren, Rue, and Lindström 2011). This approach requires building a mesh, i.e.,
splitting the space into finite elements, and calculating field values at the mesh nodes. If a
mesh is too fine, the field values take too long to compute, however if the mesh is too coarse,
the resulting field is a poor approximation and leads to mesh artifacts in the predictions.
The 2D mesh for the spatial field is built using the build_mesh function, which makes use
of the INLA function inla.mesh.2d. The user can control the parameters of the mesh,
including the granularity, using the argument mesh.args in the build_mesh function. The
parameters max.edge, cut and offset that can be set in the mesh.args list are defined
within the inla.mesh.2d function. By providing two values to the max.edge parameter,
the mesh contains an inner region of finer mesh, and an outer coarse region. This approach
allows the region of interest to have a fine as mesh as necessary without also requiring time
consuming computations in the sea regions. The mesh can take several minutes to construct,
so to prepare the data without building the mesh the user can set the makeMesh flag to FALSE.
However, it would then not be possible to fit the disaggregation model without the mesh.
If there are any NAs in the response or covariate data within the polygons the prepare_data
method will return an error. This can be dealt with using the na.action flag, which is
automatically off. Ideally the NAs in the data would be dealt with by the user beforehand,
however, setting na.action = TRUE will automatically deal with NAs. It removes any polygons
that have NAs as a response, sets any aggregation pixels with NA to zero and sets covariate NA
pixels to the median value for that covariate across all polygons.

R> dis_data <- prepare_data(polygon_shapefile = shapes,
+ covariate_rasters = covariate_stack,
+ aggregation_raster = population_raster,
+ mesh.args = list(max.edge = c(0.7, 8), cut = 0.05, offset = c(1, 2)),
+ id_var = "ID_2", response_var = "inc", na.action = TRUE, ncores = 8)

We can see a summary of the data, using the generic summary function, and plot the data.
The summary function returns information on how many pixels and polygons the data con-
tains, how many pixels in the smallest and largest polygons and a summary of the covariate
data. The plot functions plots a map of the polygon response data, the covariate rasters and
the INLA mesh, as shown in Figure 1.

R> summary(dis_data)

They data contains 109 polygons and 28892 pixels
The largest polygon contains 867 pixels and the smallest polygon contains
1 pixels

There are 3 covariates

Journal of Statistical Software 9

Elevation EVI LSTmean

−3

−2

−1

0

1

2

3

4

5

−25

−20

−15

−10

42.5 45.0 47.5 50.0 52.5
x

y

−25

−20

−15

43 45 47 49
long

la
t

10000
20000
30000
40000
50000

response

Figure 1: Maps of Madagascar showing the data used in the disaggregation model. These
plots are produced when calling the plot function on the disag_data object. The plots
show maps of the four covariates used in the model (top), the number of malaria cases in
each administrative unit (bottom right), and inla.mesh object that will be used to make the
spatial field (bottom left).

Covariate summary:
Elevation EVI LSTmean
Min. :-1.174670 Min. :-2.70028 Min. :-3.33993
1st Qu.:-0.848255 1st Qu.:-0.73278 1st Qu.:-0.73083
Median :-0.257381 Median :-0.36756 Median : 0.23743
Mean : 0.009915 Mean : 0.01077 Mean : 0.01572
3rd Qu.: 0.713218 3rd Qu.: 0.59588 3rd Qu.: 0.83374
Max. : 4.585433 Max. : 3.14432 Max. : 2.09070

R> plot(dis_data)

The prepare_data function returns an object of class ‘disag_data’, which is designed to be
used directly in the disag_model function.
Now we can fit the disaggregation model using disag_model. The required inputs for the
disag_model function are:

10 disaggregation: Bayesian Spatial Disaggregation Modeling in R

• data: Object of class ‘disag_data’ returned by the prepare_data function.

• priors: List of priors and hyperpriors to use for the model. For any not set, the default
priors will be used.

• iterations: Maximum number of iterations the model can run for to find an optimal
point.

• family: Likelihood function. Options are gaussian, poisson and binomial.

• link: Link function used in the model. Options are logit, log and identity. This
would typically be log, identity and logit for Poisson, normal and binomial likelihoods,
respectively.

Here we use a Poisson likelihood for the incidence count data with a log link function. The
spatial field and iid effect are components of the model by default, they can be turned off
using the field and iid flags. In this example we use the default priors. Hyperpriors for
the field are implemented as penalized complexity priors – specify ρmin (prior_rho_min)
and ρprob (prior_rho_prob) for the range of the field, where P (ρ < ρmin) = ρprob, and
σmax (prior_sigma_max) and σprob (prior_sigma_prob) for the variation of the field, where
P (σ > σmax) = σprob. Similarly, penalized complexity priors are implemented for the iid effect
(prior_iideffect_sd_max and prior_iideffect_sd_prob). Any of the priors and hyperpri-
ors can be set in the list of priors given to the priors argument of the disag_model function.
In order to print more verbose output the user can set the silent argument to FALSE.

R> fitted_model <- disag_model(data = dis_data,
+ iterations = 1000, family = "poisson", link = "log")

We can get a summary and plot of the model output. The summary function gives the estimate
and standard error of the fixed effect parameters in the model, as well as the negative log
likelihood and in-sample performance metrics (root mean squared error, mean absolute error,
Pearson correlation coefficient and Spearman rank correlation coefficient). The standard error
is calculated based on the approximate posterior from the TMB package. The plot function
produces two plots: one of the fixed effects parameters and one of the observed data against
in-sample predictions, as shown in Figure 2.

R> summary(fitted_model)

Likelihood function: poisson
Link function: log
Model parameters:
Estimate Std. Error
intercept -3.1840853 0.2656827
slope -0.4583419 0.1993289
slope 0.3883232 0.2221936
slope 0.1925308 0.2918306
iideffect_log_tau 1.0881520 0.2770572
log_sigma 0.0253808 0.1583851
log_rho 0.5678399 0.3199920

Journal of Statistical Software 11

−3

−2

−1

0

1

iideffect
log_tau

intercept log_rho log_sigma slope slope.1 slope.2

parameter

m
ea

n

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
obs

pr
ed

Figure 2: Plot summarizing the results of the fitted model. These plots are produced when
calling the plot function on the disag_model object. The fixed effects plot (left) shows the
fitted parameter values with uncertainty estimation for all the fixed effects in the model. The
in-sample performance plot (right) shows the predicted incidence rate values for each polygon
in the data against the observed values for that polygon in the data.

Model convergence: 0 (both X-convergence and relative convergence (4))
Negative log likelihood: 977.440180015428

In sample performance:
RMSE MAE pearson spearman log_pearson
1 1.317422 0.9918037 1 1 0.9999994

R> plot(fitted_model)

The disag_model function returns an object of class ‘disag_model’, which is designed to be
used directly in the predict function. Therefore, now that we have fitted the model, we are
ready to predict the malaria incidence rate across Madagascar.
To predict over a different spatial extent to that used in the model, a ‘RasterStack’ covering
the region to make predictions over can be passed as the newdata argument. If this argument
is not given, predictions are made over the covariate rasters used in the fit. If the user wants to
include the iid effect from the model as a component in the prediction then the predict_iid
logical flag should be set to TRUE, otherwise, the iid effect will not be predicted.
For the uncertainty calculations, parameter values are sampled from the posterior distribution
and summarized. The number of parameter draws used to calculate the uncertainty is set by
the user via the N parameter (default: 100), and the size of the credible interval (e.g., 75%,
95%) to be calculated when summarising is set via the argument CI (default: 0.95).

R> model_prediction <- predict(fitted_model)

The function predict returns a object of class ‘disag_prediction’ containing a list of two
objects: the mean predictions and the uncertainty rasters. The mean predictions contain
a raster of the mean prediction of the incidence rate, as well as rasters of the field, iid (if

12 disaggregation: Bayesian Spatial Disaggregation Modeling in R

mean.prediction lower.CI upper.CI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3: Maps of Madagascar showing the fine-scale predictions of mean, lower (2.5%) and
upper (97.5%) credible intervals of the malaria incidence rate from the disaggregation model.
These maps are produced when calling the plot function on the disag_prediction object.

predicted) and covariate component of the linear predictor. The uncertainty predictions
contains a ‘RasterStack’ of the prediction realizations and a ‘RasterStack’ of the upper and
lower credible intervals.
The plot function can be used on the disag_prediction objects, as shown in Figure 3. From
Figure 1, it can be seen that the polygon response data does not include the islands, whereas
the covariate rasters do. As can be seen in Figure 3, out-of-sample malaria predictions of
these islands have been made, however these predictions do not contribute to the in-sample
performance in Figure 2, nor to cross validation performance. In fact, these islands are not
part of Madagascar at all, they are the islands of Comoros and Mayotte.

R> plot(model_prediction)

Using three simple functions within the disaggregation package we have been able to fit a
Bayesian spatial disaggregation model and predict pixel-level incidence rate across Madagas-
car using aggregated incidence data and pixel-level environmental covariates.
The same technique can be used for spatio-temporal disaggregation modeling. In order to
achieve this, dynamic covariates are required, for example, annual covariate rasters, as well
as a spatio-temporal field, which could be achieved by adding a time varying autoregressive
component to the spatial field. A difficulty with this approach is that it results in significant
increase in computational complexity of the optimization problem, most notably from the
spatio-temporal field, leading to a significant increase in the time taken to perform the opti-
mization. The package can be developed to include spatio-temporal disaggregation models,
however that is beyond the scope of this paper.

Journal of Statistical Software 13

5. Comparison with Markov chain Monte Carlo (MCMC)

In this section we show performance comparisons between modeling using the Laplace approx-
imation provided by the disaggregation package, based on TMB, and using MCMC. Given a
function to evaluate the probability density of a distribution at any given point in parameter
space, MCMC algorithms construct Markov chains to generate samples from this distribu-
tion. These algorithms are often slow, particularly in high-dimensional settings, as it can
take a long time to converge to and effectively sample from the stationary distribution. The
density is evaluated at each step, so this problem is compounded when evaluating this density
is computationally expensive. In contrast, the disaggregation package approximates using a
Laplace approximation to the posterior to generate posterior samples. This only requires the
posterior to be maximized to find the posterior mode and therefore involves relatively few
evaluations of the posterior density compared to MCMC techniques, although potentially at
the expense of less accurate posterior samples. Here we compare the time and performance
of the two techniques. Note that slightly different results might be obtained depending on
the specific computing environment, in particular the linear algebra library used.
The model described in Section 4 for malaria in Madagascar has been optimized using the
disaggregation package. Here we fit the same model by running MCMC using the tmb-
stan package (Monnahan and Kristensen 2018), with the NUTS (no-U-turn sampler) algo-
rithm (Hoffman and Gelman 2014) using four chains. It is important to note that this is a
useful feature of the disaggregation package, to be able to create the TMB model object (us-
ing the disag_model function with one iteration) and pass it directly to tmbstan. The model
is fitted by running the MCMC algorithm for 8000 iterations with 2000 of those as warm-up,
which took 56 hours. This number of iterations was chosen by running the MCMC algorithm
repeatedly, starting at 1000 iterations, doubling the number of iterations each time until the
value of the MCMC convergence statistic, R̂, dropped below 1.05 for all model parameters.
The property R̂ is known as the Gelman-Rubin diagnostic (Gelman and Rubin 1992), and is
commonly used to evaluate MCMC convergence across multiple chains. This is achieved by
comparing the estimated between-chains and within-chain variances for each model param-
eter. Non-convergence is indicated by large differences between the variances. In contrast,
fitting the model using the Laplace approximation via TMB within the disaggregation package
took 85 seconds.

MCMC TMB
Parameter Mean SD Mean SD
Intercept −3.26 0.47 −3.18 0.27
Slope 1 −0.45 0.21 −0.46 0.20
Slope 2 0.41 0.23 0.39 0.22
Slope 3 0.18 0.30 0.19 0.29
log(τu) 1.02 0.28 1.09 0.28
log(σ) 0.12 0.19 0.03 0.16
log(ρ) 0.80 0.38 0.57 0.32

Table 1: Fitted model parameter values using both MCMC (56 hours) and using TMB
(85 seconds) within the disaggregation package.

14 disaggregation: Bayesian Spatial Disaggregation Modeling in R

Figure 4: Trace of the fixed effects parameters for MCMC using NUTS sampling, running
the algorithm for 56 hours. It was run for 8000 iterations with 2000 of those as warmup.

Fitted parameter values for both of these methods are given in Table 1. It can be seen that
the model parameters are very similar between the two methods. It is worth noting that the
field parameters given in Table 1 are log(ρ) and log(σ). If we transform these parameters to
their natural form, the values given in Table 1 correspond to a difference in the range of the
field, ρ, from 1.76 ± 0.56 (TMB) to 2.23 ± 0.84 (MCMC), and a difference in the standard
deviation of the field, σ, from 1.03 ± 0.16 (TMB) and 1.13 ± 0.22 (MCMC). Considering
these values, along with their large accompanying uncertainties, these field predictions are
very similar between the two methods. In general, the Laplace approximation will perform
worse when the posterior is less Gaussian; this occurs when the prior has more influence in
the model, for example, when there is less data or for hierarchical parameters.

R> library("tmbstan")
R> model_object <- make_model_object(data = dis_data,
+ family = "poisson", link = "log")
R> start <- Sys.time()
R> mcmc_out <- tmbstan(model_object, chains = 4, iter = 8000, warmup = 2000,
+ cores = getOption("mc.cores", 4))
R> end <- Sys.time()

Journal of Statistical Software 15

R> print(end - start)
R> stan_trace(mcmc_out, pars = c("intercept", "slope[1]", "slope[2]",
+ "slope[3]", "iideffect_log_tau", "log_sigma", "log_rho"))
R> summary(mcmc_out)$summary[c("intercept", "slope[1]", "slope[2]",
+ "slope[3]", "iideffect_log_tau", "log_sigma", "log_rho"),]

The trace of the MCMC parameter values is given in Figure 4. It can be seen that the MCMC
algorithm has been run for long enough to get sufficient chain mixing. The disaggregation
package produces similar results to the MCMC algorithm. However the model fitting using
the disaggregation package took 85 seconds in contrast to the 56 hours taken for the MCMC
run. Therefore, it can be seen that the disaggregation package provides a quick and simple
way to run disaggregation models, that can be prohibitively slow using MCMC.

6. Conclusions
Disaggregation modeling, which involves fitting models at fine-scale resolution using areal
data over heterogeneous regions, has become widely used in fields such as epidemiology and
ecology. The disaggregation package implements Bayesian spatial disaggregation modeling
with a simple, easy to use R interface. The package includes simple data preparation, fitting
and prediction functions that allow some user-defined model flexibility. In this paper we have
presented an application of the package, predicting malaria incidence rate across Madagascar
from aggregated count data and environmental covariates.
The modeling framework is implemented using the Laplace approximation and automatic
differentiation within the TMB package. This allows fast, optimized calculations in C++.
These disaggregation models are computationally intensive and take a long time using MCMC
optimization techniques. Using TMB, the models are much faster and produce similar results.
Future work could be done extending the disaggregation package to include spatio-temporal
disaggregation models. This would require a spatio-temporal field as well as dynamic co-
variates, and would be significantly more computationally intensive. Additionally, tools for
cross-validation could be included within the package. Cross-validation of spatial models is
non-trivial due to the spatial autocorrelation in the data.
The disaggregation package provides a simple, useful interface to perform spatial disaggrega-
tion modeling, with reasonable flexibility, as well as having the scope to be extended to more
complex disaggregation models.

Computational details
The results in this paper were obtained using R 4.2.3 with the TMB 1.9.3 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/, apart from INLA, which can be installed in R using the
command:

R> install.packages("INLA", repos = c(getOption("repos"),
+ INLA = "https://inla.r-inla-download.org/R/stable"),
+ dependencies = TRUE)

https://CRAN.R-project.org/

16 disaggregation: Bayesian Spatial Disaggregation Modeling in R

Data availability
All data used in this paper, including the results of the MCMC algorithm, are available in
the supplementary materials on the journal web page.

Acknowledgments
We would like to thank the Bill and Melinda Gates Foundation for funding this research.

References

Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, Pfeffer DA, Cameron
E, Rao PC, Casey D, Gibson HS, Rozier JA, Dalrymple U, Keddie SH, Collins EL, Harris
JR, Guerra CA, Thorn MP, Bisanzio D, Fullman N, Huynh CK, Kulikoff X, Kutz MJ,
Lopez AD, Mokdad AH, Naghavi M, Nguyen G, Shackelford KA, Vos T, Wang H, Lim
SS, Murray CJL, Price RN, Baird JK, Smith DL, Bhatt S, Weiss DJ, Hay SI, Gething
PW (2019). “Mapping the Global Endemicity and Clinical Burden of Plasmodium vivax,
2000–17: A Spatial and Temporal Modelling Study.” The Lancet, 394. doi:10.1016/
S0140-6736(19)31096-7.

Bell BM (2012). “CppAD: A Package for C++ Algorithmic Differentiation.” Computational
Infrastructure for Operations Research, 57, 10. URL https://cppad.readthedocs.io/
en/latest/user_guide.html.

Chen Y, Davis TA, Hager WW, Rajamanickam S (2008). “Algorithm 887: CHOLMOD,
Supernodal Sparse Cholesky Factorization and Update/Downdate.” ACM Transactions on
Mathematical Software, 35(3), 22. doi:10.1145/1391989.1391995.

Diggle PJ, Moraga P, Rowlingson B, Taylor BM (2013). “Spatial and Spatio-Temporal
Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm.” Statistical Science,
28(4), 542–563. doi:10.1214/13-sts441.

Fuglstad GA, Simpson D, Lindgren F, Rue H (2018). “Constructing Priors That Penalize the
Complexity of Gaussian Random Fields.” Journal of the American Statistical Association,
pp. 1–8. doi:10.1080/01621459.2017.1415907.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. doi:10.1214/ss/1177011136.

Greenberg JA, Mattiuzzi M (2022). gdalUtils: Wrappers for the Geospatial Data Abstraction
Library (GDAL) Utilities. R package version 2.0.3.2, URL https://CRAN.R-project.org/
package=gdalUtils.

Griewank A, Walther A (2008). Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, volume 105. 2nd edition. Siam.

Guennebaud G, Jacob B, Avery P, Bachrach A, Barthelemy S, et al. (2021). “Eigen.”
C++ package version 3.4.0, URL https://eigen.tuxfamily.org/.

https://doi.org/10.1016/S0140-6736(19)31096-7
https://doi.org/10.1016/S0140-6736(19)31096-7
https://cppad.readthedocs.io/en/latest/user_guide.html
https://cppad.readthedocs.io/en/latest/user_guide.html
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1214/13-sts441
https://doi.org/10.1080/01621459.2017.1415907
https://doi.org/10.1214/ss/1177011136
https://CRAN.R-project.org/package=gdalUtils
https://CRAN.R-project.org/package=gdalUtils
https://eigen.tuxfamily.org/

Journal of Statistical Software 17

Hijmans RJ (2023). raster: Geographic Data Analysis and Modeling. R package version
3.6-20, URL https://CRAN.R-project.org/package=raster.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15(1), 1593–1623.
URL https://jmlr.org/papers/v15/hoffman14a.html.

Johnson O, Diggle P, Giorgi E (2019). “A Spatially Discrete Approximation to Log-Gaussian
Cox Processes for Modelling Aggregated Disease Count Data.” Statistics in Medicine,
38(24), 4871–4887. doi:10.1002/sim.8339.

Keil P, Belmaker J, Wilson AM, Unitt P, Jetz W (2013). “Downscaling of Species Distribution
Models: A Hierarchical Approach.” Methods in Ecology and Evolution, 4(1), 82–94. doi:
10.1111/j.2041-210x.2012.00264.x.

Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM (2016). “TMB: Automatic Differen-
tiation and Laplace Approximation.” Journal of Statistical Software, 70(5), 1–21. doi:
10.18637/jss.v070.i05.

Li Y, Brown P, Gesink DC, Rue H (2012). “Log Gaussian Cox Processes and Spatially
Aggregated Disease Incidence Data.” Statistical Methods in Medical Research, 21(5), 479–
507. doi:10.1177/0962280212446326.

Lindgren F, Rue H (2015). “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical
Software, 63(19), 1–25. doi:10.18637/jss.v063.i19.

Lindgren F, Rue H, Lindström J (2011). “An Explicit Link between Gaussian Fields and
Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach.”
Journal of the Royal Statistical Society B, 73(4), 423–498. doi:10.1111/j.1467-9868.
2011.00777.x.

Monnahan C, Kristensen K (2018). “No-U-Turn Sampling for Fast Bayesian Inference in
ADMB and TMB: Introducing the adnuts and tmbstan R packages.” PLOS One, 13(5).
doi:10.1371/journal.pone.0197954.

Moraga P, Cramb SM, Mengersen KL, Pagano M (2017). “A Geostatistical Model for Com-
bined Analysis of Point-Level and Area-Level Data Using INLA and SPDE.” Spatial Statis-
tics, 21, 27–41. doi:10.1016/j.spasta.2017.04.006.

NASA (2018). “Gridded Population of the World (GPW), V4.” URL http://sedac.ciesin.
columbia.edu/data/collection/gpw-v4, accessed 2023-03-14.

Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.”
The R Journal, 10(1), 439–446. doi:10.32614/rj-2018-009.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ross N (2022). fasterize: Fast Polygon to Raster Conversion. R package version 1.0.4, URL
https://CRAN.R-project.org/package=fasterize.

https://CRAN.R-project.org/package=raster
https://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.1002/sim.8339
https://doi.org/10.1111/j.2041-210x.2012.00264.x
https://doi.org/10.1111/j.2041-210x.2012.00264.x
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.1177/0962280212446326
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1371/journal.pone.0197954
https://doi.org/10.1016/j.spasta.2017.04.006
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://doi.org/10.32614/rj-2018-009
https://www.R-project.org/
https://CRAN.R-project.org/package=fasterize

18 disaggregation: Bayesian Spatial Disaggregation Modeling in R

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian Inference for Latent Gaus-
sian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal
Statistical Society B, 71(2), 319–392. doi:10.1111/j.1467-9868.2008.00700.x.

Sax C, Steiner P (2023). tempdisagg: Methods for Temporal Disaggregation and Interpolation
of Time Series. R package version 1.1, URL https://CRAN.R-project.org/package=
tempdisagg.

Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH (2017). “Penalising Model Component
Complexity: A Principled, Practical Approach to Constructing Priors.” Statistical Science,
32(1), 1–28. doi:10.1214/16-sts576.

Skaug HJ, Fournier DA (2006). “Automatic Approximation of the Marginal Likelihood in
Non-Gaussian Hierarchical Models.” Computational Statistics & Data Analysis, 51(2), 699–
709. doi:10.1016/j.csda.2006.03.005.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Sturrock HJ, Bennett AF, Midekisa A, Gosling RD, Gething PW, Greenhouse B (2016).
“Mapping Malaria Risk in Low Transmission Settings: Challenges and Opportunities.”
Trends in Parasitology, 32(8), 635–645. doi:10.1016/j.pt.2016.05.001.

Sturrock HJW, Cohen JM, Keil P, Tatem AJ, Le Menach A, Ntshalintshali NE, Hsiang MS,
Gosling RD (2014). “Fine-Scale Malaria Risk Mapping from Routine Aggregated Case
Data.” Malaria Journal, 13(1), 421. doi:10.1186/1475-2875-13-421.

Tatem AJ (2017). “WorldPop, Open Data for Spatial Demography.” Scientific Data,
4(170004), 2052–4463. doi:10.1038/sdata.2017.4.

Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2013). “lgcp: An R Package for Inference
with Spatial and Spatio-Temporal Log-Gaussian Cox Processes.” Journal of Statistical
Software, 52(4), 1–40. doi:10.18637/jss.v052.i04.

Wakefield J, Shaddick G (2006). “Health-Exposure Modeling and the Ecological Fallacy.”
Biostatistics, 7(3), 438–455. doi:10.1093/biostatistics/kxj017.

Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, Cameron E, Twohig
KA, Pfeffer DA, Rozier JA, Gibson HS, Rao PC, Casey D, Bertozzi-Villa A, Collins EL,
Dalrymple U, Gray N, Harris JR, Howes RE, Kang SY, Keddie SH, May D, Rumisha S,
Thorn MP, Barber R, Fullman N, Huynh CK, Kulikoff X, Kutz MJ, Lopez AD, Mokdad AH,
Naghavi M, Nguyen G, Shackelford KA, Vos T, Wang H, Smith DL, Lim SS, Murray CJL,
Bhatt S (2019). “Mapping the Global Prevalence, Incidence, and Mortality of Plasmodium
falciparum, 2000–17: A Spatial and Temporal Modelling Study.” The Lancet, 394. doi:
10.1016/S0140-6736(19)31097-9.

Wilson K, Wakefield J (2018). “Pointless Spatial Modeling.” Biostatistics, 21(2), e17–e32.
ISSN 1465-4644. doi:10.1093/biostatistics/kxy041.

https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://CRAN.R-project.org/package=tempdisagg
https://CRAN.R-project.org/package=tempdisagg
https://doi.org/10.1214/16-sts576
https://doi.org/10.1016/j.csda.2006.03.005
https://doi.org/10.1016/j.pt.2016.05.001
https://doi.org/10.1186/1475-2875-13-421
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.18637/jss.v052.i04
https://doi.org/10.1093/biostatistics/kxj017
https://doi.org/10.1016/S0140-6736(19)31097-9
https://doi.org/10.1016/S0140-6736(19)31097-9
https://doi.org/10.1093/biostatistics/kxy041

Journal of Statistical Software 19

Affiliation:
Anita Nandi
Malaria Atlas Project
Big Data Institute
University of Oxford
Old Road Campus
Roosevelt Dr, Oxford OX3 7DQ, United Kingdom
E-mail: anita.k.nandi@gmail.com

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

April 2023, Volume 106, Issue 11 Submitted: 2019-12-11
doi:10.18637/jss.v106.i11 Accepted: 2022-07-23

mailto:anita.k.nandi@gmail.com
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v106.i11

	Introduction
	Disaggregation modeling
	Priors

	Implementation
	Other implementations

	Package usage
	Comparison with Markov chain Monte Carlo (MCMC)
	Conclusions

