7 research outputs found

    Complex origins indicate a potential bridgehead introduction of an emerging amphibian invader (Eleutherodactylus planirostris) in China

    Get PDF
    Identifying the origins of established alien species is important to prevent new introductions in the future. The greenhouse frog (Eleutherodactylus planirostris), native to Cuba, the Bahamas, and the Cayman Islands, has been widely introduced to the Caribbean, North and Central America, Oceania and Asia. This invasive alien amphibian was recently reported in Shenzhen, China, but the potential introduction sources remain poorly understood. Based on phylogenetic analysis using mitochondrial 16S, COI and CYTB sequences, we detected a complex introduction origin of this species, which may be from Hong Kong, China, the Philippines, Panama and Florida, USA, all pointing to a bridgehead introduction. In addition, the nursery trade between the four countries or regions and mainland China from 2011 to 2020 was also significantly higher than other areas with less likelihood of introductions, which supported the molecular results. Our study provides the first genetic evidence of the potential sources of this emerging amphibian invader in mainland China, which may help develop alien species control strategies in the face of growing trade through globalization

    Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature

    No full text
    Temperature is one of the most important environmental factors greatly affecting plant disease development. High temperature favors outbreaks of many plant diseases, which threaten food security and turn to be a big issue along with climate change and global warming. Here, we found that concurrent constitutive expression of the key immune regulators EDS1 and PAD4 in Arabidopsis significantly enhanced resistance to virulent bacterial pathogen Pseudomonas syringae pv. tomato at elevated temperature; however, autoimmunity-related growth retardation was also observed on these plants at a normal temperature. To balance this growth-defense trade-off, we generated transgenic plants dual expressing EDS1 and PAD4 genes under the control of a thermo-sensitive promoter from the HSP70 gene, whose expression is highly induced at an elevated temperature. Unlike constitutive overexpression lines, the proHSP70-EP transgenic lines exhibited enhanced resistance to bacterial pathogens at an elevated temperature without growth defects at normal condition. Thus, this study provides a potential strategy for genetic manipulation of plants to deal with the simultaneous abiotic and biotic stresses
    corecore