31 research outputs found

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology

    A Multisite Preregistered Paradigmatic Test of the Ego-Depletion Effect

    Get PDF
    We conducted a preregistered multilaboratory project (k = 36; N = 3,531) to assess the size and robustness of ego-depletion effects using a novel replication method, termed the paradigmatic replication approach. Each laboratory implemented one of two procedures that was intended to manipulate self-control and tested performance on a subsequent measure of self-control. Confirmatory tests found a nonsignificant result (d = 0.06). Confirmatory Bayesian meta-analyses using an informed-prior hypothesis (δ = 0.30, SD = 0.15) found that the data were 4 times more likely under the null than the alternative hypothesis. Hence, preregistered analyses did not find evidence for a depletion effect. Exploratory analyses on the full sample (i.e., ignoring exclusion criteria) found a statistically significant effect (d = 0.08); Bayesian analyses showed that the data were about equally likely under the null and informed-prior hypotheses. Exploratory moderator tests suggested that the depletion effect was larger for participants who reported more fatigue but was not moderated by trait self-control, willpower beliefs, or action orientation.</p

    Modulation of Coenzyme Q10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging

    No full text
    Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the aging process. In fact, coenzyme Q10 synthesis is known to decrease with age in different tissues including skin. Moreover, synthesis can be inhibited by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins, that are widely used hypocholesterolemic drugs. They target a key enzymatic step along the mevalonate pathway, involved in the synthesis of both cholesterol and isoprenylated compounds including CoQ10.In the present study, we show that pharmacological CoQ10 deprivation at concentrations of statins > 10000 nM triggers intracellular oxidative stress, mitochondrial dysfunction and generates cell death in human dermal fibroblasts (HDF). On the contrary, at lower statin concentrations, cells and mainly mitochondria, are able to partially adapt and prevent oxidative imbalance and overt mitochondrial toxicity. Importantly, our data demonstrate that CoQ10 decrease promotes mitochondrial permeability transition and bioenergetic dysfunction leading to premature aging of human dermal fibroblasts in vitro

    Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts

    No full text
    Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone found in equilibrium between its oxidised (ubiquinone) and reduced (ubiquinol) form, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the ageing process. CoQ10 biosynthesis decreases with age in different tissues including skin and its biosynthesis can be modulated by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins. Statin-induced CoQ10 deprivation has previously been shown to be associated with the development of a senescence phenotype in cultured human dermal fibroblasts (HDF), hence this model was used to further investigate the role of CoQ10 in skin ageing. The present study aimed to compare the bioavailability of exogenously added CoQ10, in the form of ubiquinone or ubiquinol, to CoQ10-deprived HDF, and to determine their efficacy in rescuing the senescent phenotype induced by CoQ10 deprivation. First, additional senescence markers were implemented to further support the pro-ageing effect of statin-induced CoQ10 deprivation in HDF. Indeed, numerous senescence-associated secretory phenotype (SASP) markers such as p21, IL-8, CXCL1, and MMP-1 were upregulated, whereas components of the extracellular matrix were downregulated (elastin, collagen type 1). Next, we showed that CoQ10 supplementation to statin-treated HDF was able to counteract CoQ10 deprivation and rescued the development of selected senescence/ageing markers in HDF. Ubiquinol resulted more bioavailable than ubiquinone at the same concentration (15 μg/mL) and it significantly improved the cellular oxidative status even within isolated mitochondria highlighting an effective subcellular delivery. Ubiquinol was also more efficient compared to ubiquinone in reverting the expression of the senescent phenotype, quantified in terms of β-galactosidase positivity, p21, collagen type 1, and elastin at the gene and protein expression levels. In conclusion, our results highlight the pivotal role of CoQ10 for skin vitality and strongly support the use of both forms as a beneficial and effective anti-ageing skin care treatment

    The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation.

    Get PDF
    Telomerase activity has not been detected in healthy human liver biopsy samples, but it is up-regulated in most human liver tumors. It is not clear whether telomerase is activated in response to acute or chronic liver injury. Telomerase activity is closely associated with expression of its catalytic subunit, telomerase reverse transcriptase (TERT). We analyzed the activity of the human TERT (hTERT) promoter during liver regeneration in vivo and hepatocyte proliferation in vitro

    Assessing Cellular Uptake of Exogenous Coenzyme Q10 into Human Skin Cells by X-ray Fluorescence Imaging

    No full text
    X-ray fluorescence (XRF) imaging is a highly sensitive non-invasive imaging method for detection of small element quantities in objects, from human-sized scales down to single-cell organelles, using various X-ray beam sizes. Our aim was to investigate the cellular uptake and distribution of Q10, a highly conserved coenzyme with antioxidant and bioenergetic properties. Q10 was labeled with iodine (I2-Q10) and individual primary human skin cells were scanned with nano-focused beams. Distribution of I2-Q10 molecules taken up inside the screened individual skin cells was measured, with a clear correlation between individual Q10 uptake and cell size. Experiments revealed that labeling Q10 with iodine causes no artificial side effects as a result of the labeling procedure itself, and thus is a perfect means of investigating bioavailability and distribution of Q10 in cells. In summary, individual cellular Q10 uptake was demonstrated by XRF, opening the path towards Q10 multi-scale tracking for biodistribution studies

    Assessing Cellular Uptake of Exogenous Coenzyme Q10_{10} into Human Skin Cells by X-ray Fluorescence Imaging

    No full text
    X-ray fluorescence (XRF) imaging is a highly sensitive non-invasive imaging method for detection of small element quantities in objects, from human-sized scales down to single-cell organelles, using various X-ray beam sizes. Our aim was to investigate the cellular uptake and distribution of Q10_{10}, a highly conserved coenzyme with antioxidant and bioenergetic properties. Q10_{10} was labeled with iodine (I2_2-Q10_{10}) and individual primary human skin cells were scanned with nano-focused beams. Distribution of I2_2-Q10_{10} molecules taken up inside the screened individual skin cells was measured, with a clear correlation between individual Q10_{10} uptake and cell size. Experiments revealed that labeling Q10_{10} with iodine causes no artificial side effects as a result of the labeling procedure itself, and thus is a perfect means of investigating bioavailability and distribution of Q10_{10} in cells. In summary, individual cellular Q10_{10} uptake was demonstrated by XRF, opening the path towards Q10_{10} multi-scale tracking for biodistribution studies
    corecore