57 research outputs found

    Deep Decay: Into Dia-chronic Polychromatic Material Fictions

    Get PDF
    The deep geological repository project for the long-term storage of radioactive material opens an encounter between design processes in the present and the ‘deep time’ of 4.46 billion year futures. Beyond debates around ethics of responsibility to future generations, this paper argues, this invokes a more radical futurity, where human thought confronts its contingency alongside nuclear timescales. Art practices play a key ‘stakeholder’ role in imagining repository sites, in a context where they are both rooted in materialities of stochastic decay process and necessarily subject to interdisciplinary transformation. This paper asks what specific knowledge art practices could give us in this context. What are their potentials and problems? And what could this mean for the historical conditions of ‘contemporary art’? It does this through departing from the 2010 film Into Eternity and its production of awe-struck ineffability through cinematic allusion to massive duration. Deep radiological times are proposed instead not as ‘eternity’ but as ‘very large finitude’ (Morton), not immeasurable but as call to develop art practice through collective experimentation and technological augmentation. This extends Nick Srnicek’s proposal for an ‘aesthetics of the interface’ as a making operational of complex data through making it amenable to the senses, and concludes with some propositions from the author’s current art practice

    Environmental Impact Assessment: Cordata Community Park Bellingham, WA

    Get PDF
    The City of Bellingham (COB) is in phase I of the Cordata Community Park project. The community park will the newest park located within city limits. Phase I development will include amenities such as age separated playgrounds, picnic areas including a large picnic shelter, parkour, bike pump track, restrooms, parking and trails. Wetland mitigation efforts will be implemented for this project. Landscape planting, extension of utilities, security lighting, and irrigation will be included

    Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle

    Get PDF
    Tropical theileriosis, bovine babesiosis and anaplasmosis are tick-borne protozoan diseases that impose serious constraints on the health and productivity of domestic cattle in tropical and sub-tropical regions of the world. A common feature of these diseases is that, following recovery from primary infection, animals become persistent carriers of the pathogen and continue to play a critical role in disease epidemiology, acting as reservoirs of infection. This study describes development and evaluation of multiplex and single PCR assays for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Following in silico screening for candidate target genes representing each of the pathogens, an optimised multiplex PCR assay was established using three primer sets, cytob1, MAR1bB2 and bovar2A, for amplification of genomic DNA of T. annulata, A. marginale and B. bovis respectively. The designed primer sets were found to be species-specific, generating amplicons of 312, 265 and 166 base pairs, respectively and were deemed suitable for the development of a multiplex assay. The sensitivity of each primer pair was evaluated using serial dilutions of parasite DNA, while specificity was confirmed by testing for amplification from DNA of different stocks of each pathogen and other Theileria, Babesia and Anaplasma species. Additionally, DNA preparations derived from field samples were used to evaluate the utility of the single and multiplex PCRs for determination of infection status. The multiplex PCR was found to detect each pathogen species with the same level of sensitivity, irrespective of whether its DNA was amplified in isolation or together with DNA representing the other pathogens. Moreover, single and multiplex PCRs were able to detect each species with equal sensitivity in serially diluted DNA representing mixtures of T. annulata, B. bovis and A. marginale, and no evidence of non-specific amplification from non-target species was observed. Validation that the multiplex PCR efficiently detects single and mixed infections from field samples was demonstrated. The developed assay represents a simple and efficient diagnostic for co-detection of tropical theileriosis, bovine babesiosis and anaplasmosis, and may be a valuable tool for epidemiological studies aimed at assessing the burden of multiple infection with tick-borne pathogens and improving control of the associated diseases in endemic regions

    Diagnosis of non-effusive feline infectious peritonitis by reverse transcriptase quantitative PCR from mesenteric lymph node fine-needle aspirates

    Get PDF
    The aim of this study was to evaluate a feline coronavirus (FCoV) reverse transcriptase quantitative PCR (RT-qPCR) on fine-needle aspirates (FNAs) from mesenteric lymph nodes (MLNs) collected in sterile saline for the purpose of diagnosing non-effusive feline infectious peritonitis (FIP) in cats. First, the ability of the assay to detect viral RNA in MLN FNA preparations compared with MLN biopsy preparations was assessed in matched samples from eight cats. Second, a panel of MLN FNA samples was collected from a series of cats representing non-effusive FIP cases (n = 20), FCoV-seropositive individuals (n = 8) and FCoV seronegative individuals (n = 18). Disease status of the animals was determined using a combination of gross pathology, histopathology and/or 'FIP profile', consisting of serology, clinical pathology and clinical signs. Viral RNA was detected in 18/20 non-effusive FIP cases; it was not detected in two cases that presented with neurological FIP. Samples from 18 seronegative non-FIP control cats and 7/8 samples from seropositive non-FIP control cats contained no detectable viral RNA. Thus, as a method for diagnosing non-effusive FIP, MLN FNA RT-qPCR had an overall sensitivity of 90.0% and specificity of 96.1%. In cases with a high index of suspicion of disease, RT-qPCR targeting FCoV in MLN FNA can provide important information to support the ante-mortem diagnosis of non-effusive FIP. Importantly, viral RNA can be reliably detected in MLN FNA samples in saline submitted via the national mail service. When applied in combination with biochemistry, haematology and serological tests in cases with a high index of suspicion of disease the results of this assay may be used to support a diagnosis of non-effusive FIP

    The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    Get PDF
    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct

    Theileria lestoquardi displays reduced genetic diversity relative to sympatric Theileria annulata in Oman

    Get PDF
    The Apicomplexan parasites, Theileria lestoquardi and Theileria annulata, the causative agents of theileriosis in small and large ruminants, are widespread in Oman, in areas where cattle, sheep and goats co-graze. Genetic analysis can provide insight into the dynamics of the parasite and the evolutionary relationship between species. Here we identified ten genetic markers (micro- and mini-satellites) spread across the T. lestoquardi genome, and confirmed their species specificity. We then genotyped T. lestoquardi in different regions in Oman. The genetic structures of T. lestoquardi populations were then compared with previously published data, for comparable panels of markers, for sympatric T. annulata isolates. In addition, we examined two antigen genes in T. annulata (Tams1 and Ta9) and their orthologues in T. lestoquardi (Tlms1 and Tl9). The genetic diversity and multiplicity of infection (MOI) were lower in T. lestoquardi (He = 0.64–0.77) than T. annulata (He = 0.83–0.85) in all populations. Very limited genetic differentiation was found among T. lestoquardi and T. annulata populations. In contrast, limited but significant linkage disequilibrium was observed within regional populations of each species. We identified eight T. annulata isolates in small ruminants; the diversity and MOI were lower among ovine/caprine compared to bovine. Sequence diversity of the antigen genes, Tams1 and Ta9 in T. annulata (π = 0.0733 and π = 0.155 respectively), was 10-fold and 3-fold higher than the orthologous Tlms1 and Tl9 in T. lestoquardi (π = 0.006 and π = 0.055, respectively). Despite a comparably high prevalence, T. lestoquardi has lower genetic diversity compared to sympatric T. annulata populations. There was no evidence of differentiation among populations of either species. In comparison to T. lestoquardi, T. annulata has a larger effective population size. While genetic exchange and recombination occur in both parasite species, the extent of diversity, overall, is less for T. lestoquardi. It is, therefore, likely that T. lestoquardi evolved from an ancestor of present day T. annulata and that this occurred either once or on a limited number of occasions

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen

    Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci

    Get PDF
    African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics

    Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome

    Get PDF
    The domestication of Asian rice (Oryza sativa) was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica) suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV) consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species
    corecore