69 research outputs found

    Follow-up of vestibular function in bilateral vestibulopathy

    Get PDF
    Objective: Bilateral vestibulopathy (BV) leads to a bilateral deficit of the vestibulo-ocular reflex and has various aetiologies. The main goal of this study was to determine the frequency and degree of recovery or worsening of vestibular function over time.Methods: 82 patients (59 males, 23 females; mean age at the time of diagnosis 56.3 (SD 17.6) years) were re-examined 51 (36) months after the first examination. All patients underwent a standardised neuro-ophthalmological and neuro-otological examination. Electronystagmography with bithermal caloric irrigation was analysed by measurement of the mean peak slow phase velocity (SPV) of the induced nystagmus. Patients evaluated the course of their disease in terms of balance, gait unsteadiness and health related quality of life.Results: Statistical analysis of the mean peak SPV of caloric induced nystagmus revealed a non-significant worsening over time (initial mean peak SPV 3.0 (3.5)°/s vs 2.1 (2.8)°/s). With respect to subgroups of aetiology, only patients with BV due to meningitis exhibited an increasing, but non-significant SPV (1.0 (1.4)°/s vs 1.9 (1.6)°/s). Vestibular outcome was independent of age, gender, time course of manifestation and severity of BV. Single analysis of all patients showed that a substantial improvement ⩾5°/s occurred in two patients on both sides (idiopathic n = 1, Sjögren's syndrome n = 1) and in eight patients on one side (idiopathic n = 6, meningitis n = 1, Menière's disease n = 1). In 84% of patients there was impairment of their health related quality of life (42% slight, 24% moderate, 18% severe). Forty-three per cent of patients rated the course of their disease as stable, 28% as worsened and 29% as improved.Conclusions: Our data support the view that more than 80% of patients with BV do not improve. Thus the prognosis of BV is less favourable than assumed

    The phosphoproteome of toll-like receptor-activated macrophages

    Get PDF
    First global and quantitative analysis of phosphorylation cascades induced by toll-like receptor (TLR) stimulation in macrophages identifies nearly 7000 phosphorylation sites and shows extensive and dynamic up-regulation and down-regulation after lipopolysaccharide (LPS).In addition to the canonical TLR-associated pathways, mining of the phosphorylation data suggests an involvement of ATM/ATR kinases in signalling and shows that the cytoskeleton is a hotspot of TLR-induced phosphorylation.Intersecting transcription factor phosphorylation with bioinformatic promoter analysis of genes induced by LPS identified several candidate transcriptional regulators that were previously not implicated in TLR-induced transcriptional control

    PHOSIDA 2011: the posttranslational modification database

    Get PDF
    The primary purpose of PHOSIDA (http://www.phosida.com) is to manage posttranslational modification sites of various species ranging from bacteria to human. Since its last report, PHOSIDA has grown significantly in size and evolved in scope. It comprises more than 80 000 phosphorylated, N-glycosylated or acetylated sites from nine different species. All sites are obtained from high-resolution mass spectrometric data using the same stringent quality criteria. One of the main distinguishing features of PHOSIDA is the provision of a wide range of analysis tools. PHOSIDA is comprised of three main components: the database environment, the prediction platform and the toolkit section. The database environment integrates and combines high-resolution proteomic data with multiple annotations. High-accuracy species-specific phosphorylation and acetylation site predictors, trained on the modification sites contained in PHOSIDA, allow the in silico determination of modified sites on any protein on the basis of the primary sequence. The toolkit section contains methods that search for sequence motif matches or identify de novo consensus, sequences from large scale data sets

    An shRNA-Based Screen of Splicing Regulators Identifies SFRS3 as a Negative Regulator of IL-1β Secretion

    Get PDF
    The generation of diversity and plasticity of transcriptional programs are key components of effective vertebrate immune responses. The role of Alternative Splicing has been recognized, but it is underappreciated and poorly understood as a critical mechanism for the regulation and fine-tuning of physiological immune responses. Here we report the generation of loss-of-function phenotypes for a large collection of genes known or predicted to be involved in the splicing reaction and the identification of 19 novel regulators of IL-1β secretion in response to E. coli challenge of THP-1 cells. Twelve of these genes are required for IL-1β secretion, while seven are negative regulators of this process. Silencing of SFRS3 increased IL-1β secretion due to elevation of IL-1β and caspase-1 mRNA in addition to active caspase-1 levels. This study points to the relevance of splicing in the regulation of auto-inflammatory diseases

    Phosphorylation of iRhom2 Controls Stimulated Proteolytic Shedding by the Metalloprotease ADAM17/TACE

    Get PDF
    This deposit is composed by the main article plus the supplementary materials of the publication.Cell surface metalloproteases coordinate signaling during development, tissue homeostasis, and disease. TACE (TNF-α-converting enzyme), is responsible for cleavage ("shedding") of membrane-tethered signaling molecules, including the cytokine TNF, and activating ligands of the EGFR. The trafficking of TACE within the secretory pathway requires its binding to iRhom2, which mediates the exit of TACE from the endoplasmic reticulum. An important, but mechanistically unclear, feature of TACE biology is its ability to be stimulated rapidly on the cell surface by numerous inflammatory and growth-promoting agents. Here, we report a role for iRhom2 in TACE stimulation on the cell surface. TACE shedding stimuli trigger MAP kinase-dependent phosphorylation of iRhom2 N-terminal cytoplasmic tail. This recruits 14-3-3 proteins, enforcing the dissociation of TACE from complexes with iRhom2, promoting the cleavage of TACE substrates. Our data reveal that iRhom2 controls multiple aspects of TACE biology, including stimulated shedding on the cell surface.Fundação Calouste Gulbenkian; Worldwide Cancer Research grant: (14-1289); Marie Curie Career Integration Grant: (project no. 618769); Fundação para a Ciência e Tecnologia grants:( SFRH/BCC/52507/2014, PTDC/BEX-BCM/3015/2014, LISBOA-01-0145-FEDER-007660, FCT-ANR/NEU-NMC/0006/2013, PTDC/NEU-NMC/2459/2014, IF/00697/2014, SFRH/BPD/117216/2016); European Crohn’s and Colitis Organization, and COST grant: (BM1406).info:eu-repo/semantics/publishedVersio

    Quantitative Phosphoproteomics of CXCL12 (SDF-1) Signaling

    Get PDF
    CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation

    Brief an B. Schott's Söhne : 26.02.1812

    No full text
    corecore