517 research outputs found

    Photonics design theory enhancing light extraction efficiency in quantum dot light emitting diodes

    Get PDF
    The external quantum efficiency (EQE) of quantum dot light emitting diodes (QLEDs) needs improvement for more power-efficient devices. One of the main limitations is the low light extraction efficiency (LEE). Generally, only 20% of the light that is generated inside the emissive layer makes its way out of the device into air, with the rest being lost to waveguide and substrate modes and surface plasmon polaritons. Different photonics structures have been previously tested to help extract the light that is trapped inside the device. Here we report a photonics design which is a combination of nanopillars and grating structures for improving the LEE of QLEDs. The effect of changing the nanopillar height, radius and material has been studied. It was found that ZnO nanopillars of 500 nm pitch, 200 nm height and 400 nm width alongside 150 nm width and pitch grating structure can increase the LEE at 460 nm by 50% and at 640 nm by 20%. It was also found that different materials can help extract light at different wavelengths. TiO2 nanopillars increased the extraction efficiency at ∼590 nm region which was not observed by the other materials. As around 19% of the world's electricity consumption is due to lighting applications, increasing the LEE can significantly reduce the power consumption

    Towards the deformation quantization of linearized gravity

    Full text link
    We present a first attempt to apply the approach of deformation quantization to linearized Einstein's equations. We use the analogy with Maxwell equations to derive the field equations of linearized gravity from a modified Maxwell Lagrangian which allows the construction of a Hamiltonian in the standard way. The deformation quantization procedure for free fields is applied to this Hamiltonian. As a result we obtain the complete set of quantum states and its discrete spectrum.Comment: 13 pages, no figures **preliminary entry **

    Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies

    Get PDF
    A ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(III), Nd(III), Yb(III)] or another d-block ion [Zn(II), Mn(II)]. When M = Gd(III) or Mn(II) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(II) unit provides the possibility of two different types of imaging modality in a single molecular probe. In the case of Ru·Mn and Ru·Mn2 the Ru(II)-based phosphorescence is substantially reduced compared to the control complexes Ru·Zn and Ru·Zn2 due to the quenching effect of the Mn(II) centres. Ultrafast transient absorption spectroscopy studies on Ru·Mn (and Ru·Zn as a non-quenched control) reveal the occurrence of fast (<1 ns) PET in Ru·Mn, from the Mn(II) ion to the Ru(II)-based 3MLCT state, i.e. MnII–(phen˙−)–RuIII → MnIII–(phen˙−)–RuII; the resulting MnIII–(phen˙−) state decays with τ ≈ 5 ns and is non-luminescent. This occurs in conformers when an ET pathway is facilitated by a planar, conjugated bridging ligand conformation connecting the two units across the alkyne bridge but does not occur in conformers where the two units are electronically decoupled by a twisted conformation of the bridging ligand. Computational studies (DFT) on Ru·Mn confirmed both the occurrence of the PET quenching pathway and its dependence on molecular conformation. In the complexes Ru·Ln and Ru·Ln2 (Ln = Nd, Yb), sensitised near-infrared luminescence from Nd(III) or Yb(III) is observed following photoinduced energy-transfer from the Ru(II) core, with Ru → Nd energy-transfer being faster than Ru → Yb energy-transfer due to the higher density of energy-accepting states on Nd(III)

    Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation

    Full text link
    Using density functional molecular dynamics simulations, we analyze the broken chemical order in a GeS2_2 glass and its impact on the dynamical properties of the glass through the in-depth study of the vibrational eigenvectors. We find homopolar bonds and the frequencies of the corresponding modes are in agreement with experimental data. Localized S-S modes and 3-fold coordinated sulfur atoms are found to be at the origin of specific Raman peaks whose origin was not previously clear. Through the ring size statistics we find, during the glass formation, a conversion of 3-membered rings into larger units but also into 2-membered rings whose vibrational signature is in agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.

    Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases

    Full text link
    Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are studied via mean-field theory. We show that an infinitesimal value of the coupling can induce a FM phase transition at a finite temperature always above the critical temperature of Bose-Einstein condensation. This contrasts sharply with the case of Fermi gases, in which the Stoner coupling IsI_s can not lead to a FM phase transition unless it is larger than a threshold value I0I_0. The FM coupling also increases the critical temperatures of both the ferromagnetic transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure

    Piloted evaluation of a control allocation technique to recover from pilot-induced oscillations

    Get PDF
    This paper describes the maturation of a control allocation technique designed to assist pilots in recovery from pilot-induced oscillations. The control allocation technique to recover from pilot-induced oscillations is designed to enable next-generation high-efficiency aircraft designs. Energy-efficient next-generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. A common issue on aircraft with actuator rate limitations is they are susceptible to pilot-induced oscillations caused by the phase lag between the pilot inputs and control surface response. The control allocation technique to recover from pilot-induced oscillations uses real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a nonlinear aircraft model in the NASA Ames Research Center's Vertical Motion Simulator. Results indicate that the control allocation technique to recover from pilot-induced oscillations helps reduce oscillatory behavior introduced by control surface rate limiting, including the pilot-induced oscillation tendencies reported by pilots

    Quark exchange model for charmonium dissociation in hot hadronic matter

    Full text link
    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where QQ and qq refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+πD+DˉJ/\psi + \pi \to D+ \bar D is calculated using a potential model, which is fitted to the meson mass spectrum. The temperature dependence of the relaxation time for the \J/Psi distribution in a homogeneous thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio

    Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps

    Get PDF
    We theoretically study specific schemes for performing a fundamental two-qubit quantum gate via controlled atomic collisions by switching microscopic potentials. In particular we calculate the fidelity of a gate operation for a configuration where a potential barrier between two atoms is instantaneously removed and restored after a certain time. Possible implementations could be based on microtraps created by magnetic and electric fields, or potentials induced by laser light.Comment: 10 pages, 3 figure

    Ruthenium-rhenium and ruthenium-palladium supramolecular photocatalysts for photoelectrocatalytic CO2 and H+ reduction.

    Get PDF
    Photoelectrocatalysis offers the opportunity to close the carbon loop and convert captured CO2 back into useful fuels and feedstocks, mitigating against anthropogenic climate change. However, since CO2 is inherently stable and sunlight is a diffuse and intermittent energy source, there are considerable scientific challenges to overcome. In this paper we present the integration of two new metal–organic photocatalysts into photocathodes for the reduction of CO2 using ambient light. The two molecular dyads contained a rhenium carbonyl or palladium-based catalytic centre bridged to a ruthenium bipyridyl photosensitizer functionalised with carboxylic acid groups to enable adsorption onto the surface of mesoporous NiO cathodes. The photocathodes were evaluated for photoelectrochemical reduction of CO2 to CO or H+ to H2 and the performances were compared directly with a control compound lacking the catalytic site. A suite of electrochemical, UV-visible steady-state/time-resolved spectroscopy, X-ray photoelectron spectroscopy and gas chromatography measurements were employed to gain kinetic and mechanistic insight to primary electron transfer processes and relate the structure to the photoelectrocatalytic performance under various conditions in aqueous media. A change in behaviour when the photocatalysts were immobilized on NiO was observed. Importantly, the transfer of electron density towards the Re–CO catalytic centre was observed, using time resolved infrared spectroscopy, only when the photocatalyst was immobilized on NiO and not in MeCN solution. We observed that photocurrent and gaseous photoproduct yields are limited by a relatively low yield of the required charge-separated state across the NiO|Photocatalyst interface. Nonetheless, the high faradaic efficiency (94%) and selectivity (99%) of the Re system towards CO evolution are very promising
    corecore