702 research outputs found
Developing transferable management skills through Action Learning
There has been increasing criticism of the relevance of the Master of Business Administration (MBA) in developing skills and competencies. Action learning, devised to address problem-solving in the workplace, offers a potential response to such criticism. This paper offers an insight into one universityâs attempt to integrate action learning into the curriculum. Sixty-five part-time students were questioned at two points in their final year about their action learning experience and the enhancement of relevant skills and competencies. Results showed a mixed picture. Strong confirmation of the importance of selected skills and competencies contrasted with weaker agreement about the extent to which these were developed by action learning. There was, nonetheless, a firm belief in the positive impact on the learning process. The paper concludes that action learning is not a panacea but has an important role in a repertoire of educational approaches to develop relevant skills and competencies
I=3/2 Scattering in the Nonrelativisitic Quark Potential Model
We study elastic scattering to Born order using
nonrelativistic quark wavefunctions in a constituent-exchange model. This
channel is ideal for the study of nonresonant meson-meson scattering amplitudes
since s-channel resonances do not contribute significantly. Standard quark
model parameters yield good agreement with the measured S- and P-wave phase
shifts and with PCAC calculations of the scattering length. The P-wave phase
shift is especially interesting because it is nonzero solely due to
symmetry breaking effects, and is found to be in good agreement with experiment
given conventional values for the strange and nonstrange constituent quark
masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210
Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario
A dynamical systems approach to competition of Saffman-Taylor fingers in a
channel is developed. This is based on the global study of the phase space
structure of the low-dimensional ODE's defined by the classes of exact
solutions of the problem without surface tension. Some simple examples are
studied in detail, and general proofs concerning properties of fixed points and
existence of finite-time singularities for broad classes of solutions are
given. The existence of a continuum of multifinger fixed points and its
dynamical implications are discussed. The main conclusion is that exact
zero-surface tension solutions taken in a global sense as families of
trajectories in phase space spanning a sufficiently large set of initial
conditions, are unphysical because the multifinger fixed points are
nonhyperbolic, and an unfolding of them does not exist within the same class of
solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed
points is argued to be essential to the physically correct qualitative
description of finger competition. The restoring of hyperbolicity by surface
tension is discussed as the key point for a generic Dynamical Solvability
Scenario which is proposed for a general context of interfacial pattern
selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys.
Rev.
Scaling ozone responses of forest trees to the ecosystem level in a changing climate
Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd
Decay of the classical Loschmidt echo in integrable systems
We study both analytically and numerically the decay of fidelity of classical
motion for integrable systems. We find that the decay can exhibit two
qualitatively different behaviors, namely an algebraic decay, that is due to
the perturbation of the shape of the tori, or a ballistic decay, that is
associated with perturbing the frequencies of the tori. The type of decay
depends on initial conditions and on the shape of the perturbation but, for
small enough perturbations, not on its size. We demonstrate numerically this
general behavior for the cases of the twist map, the rectangular billiard, and
the kicked rotor in the almost integrable regime.Comment: 8 pages, 3 figures, revte
Kaon-Nucleon Scattering Amplitudes and Z-Enhancements from Quark Born Diagrams
We derive closed form kaon-nucleon scattering amplitudes using the ``quark
Born diagram" formalism, which describes the scattering as a single interaction
(here the OGE spin-spin term) followed by quark line rearrangement. The low
energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with
experiment given conventional quark model parameters. For Gev
however the I=1 elastic phase shift is larger than predicted by Gaussian
wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent
low energy KN potentials for S-wave scattering are also derived. Finally we
consider OGE forces in the related channels K, KN and K,
and determine which have attractive interactions and might therefore exhibit
strong threshold enhancements or ``Z-molecule" meson-baryon bound states.
We find that the minimum-spin, minimum-isospin channels and two additional
K channels are most conducive to the formation of bound states.
Related interesting topics for future experimental and theoretical studies of
KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte
Dynamical localization simulated on a few qubits quantum computer
We show that a quantum computer operating with a small number of qubits can
simulate the dynamical localization of classical chaos in a system described by
the quantum sawtooth map model. The dynamics of the system is computed
efficiently up to a time , and then the localization length
can be obtained with accuracy by means of order computer runs,
followed by coarse grained projective measurements on the computational basis.
We also show that in the presence of static imperfections a reliable
computation of the localization length is possible without error correction up
to an imperfection threshold which drops polynomially with the number of
qubits.Comment: 8 pages, 8 figure
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
Two-Loop Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson
Low- and intermediate mass Higgs bosons decay preferably into fermion pairs.
The one-loop electroweak corrections to the respective decay rates are
dominated by a flavour-independent term of . We calculate
the two-loop gluon correction to this term. It turns out that this correction
screens the leading high- behaviour of the one-loop result by roughly
10\%. We also present the two-loop QCD correction to the contribution induced
by a pair of fourth-generation quarks with arbitrary masses. As expected, the
inclusion of the QCD correction considerably reduces the renormalization-scheme
dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08
NN Core Interactions and Differential Cross Sections from One Gluon Exchange
We derive nonstrange baryon-baryon scattering amplitudes in the
nonrelativistic quark model using the ``quark Born diagram" formalism. This
approach describes the scattering as a single interaction, here the
one-gluon-exchange (OGE) spin-spin term followed by constituent interchange,
with external nonrelativistic baryon wavefunctions attached to the scattering
diagrams to incorporate higher-twist wavefunction effects. The short-range
repulsive core in the NN interaction has previously been attributed to this
spin-spin interaction in the literature; we find that these perturbative
constituent-interchange diagrams do indeed predict repulsive interactions in
all I,S channels of the nucleon-nucleon system, and we compare our results for
the equivalent short-range potentials to the core potentials found by other
authors using nonperturbative methods. We also apply our perturbative
techniques to the N and systems: Some
channels are found to have attractive core potentials and may accommodate
``molecular" bound states near threshold. Finally we use our Born formalism to
calculate the NN differential cross section, which we compare with experimental
results for unpolarised proton-proton elastic scattering. We find that several
familiar features of the experimental differential cross section are reproduced
by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04,
MIT-CTP-2187, ORNL-CCIP-93-0
- âŠ