22 research outputs found

    Two novel variations in LRP2 cause Donnai-Barrow syndrome in a Chinese family with severe early-onset high myopia

    Get PDF
    Donnai-Barrow syndrome (DBS) is a rare autosomal recessive disorder caused by mutation in the low density lipoprotein receptor-related protein 2 gene (LRP2). Defects in this protein may lead to clinical multiple organ malformations by affecting the development of organs such as the nervous system, eyes, ears, and kidneys. Although some variations on LRP2 have been found to be associated with DBS, early diagnosis and prevention of patients with atypical DBS remains a challenge for many physicians because of their clinical heterogeneity. The objective of this study is to explore the association between the clinical presentation and the genotype of a DBS patient who was initially diagnosed with early-onset high myopia (eoHM) from a healthy Chinese family. To this end, we tested the patient of this family via whole exome sequencing and further verified the results among other family members by Sanger sequencing. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. Genetic assessment revealed that two novel variations in LRP2, a de novo missense variation (c.9032G>A; p.Arg3011Lys) and a novel splicing variation (c.2909-2A>T) inherited from the father, were both carried by the proband in this family, and they are strongly associated with the typical clinical features of DBS patients. Therefore, in this paper we are the first to report two novel compound heterozygous variations in LPR2 causing DBS. Our study extends the genotypic spectrums for LPR2-DBS and better assists physicians in predicting, diagnosing, and conducting gene therapy for DBS

    The role of type I interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge

    Get PDF
    International audienceMammalian type I interferons (IFNα/β) are known to modulate inflammatory processes in addition to their antiviral properties. Indeed, virus-induced type I interferons regulate the mammalian phagocyte immune response to bacteria during superinfections. However, it remains unresolved whether type I IFNs similarly impact the chicken macrophage immune response. We first evidenced that IFNα and IFNβ act differently in terms of gene expression stimulation and activation of intracellular signaling pathways in chicken macrophages. Next, we showed that priming of chicken macrophages with IFNα increased bacteria uptake, boosted bacterial-induced ROS/NO production and led to an increased transcriptional expression or production of NOS2/NO, IL1B/IL-1β and notably IFNB/IFNβ. Neutralization of IFNβ during bacterial challenge limited IFNα-induced augmentation of the pro-inflammatory response. In conclusion, we demonstrated that type I IFNs differently regulate chicken macrophage functions and drive a pro-inflammatory response to bacterial challenge. These findings shed light on the diverse functions of type I IFNs in chicken macrophages

    Energy efficient CEDAR protocol

    No full text

    Max-Min-Degree Neural Network for Centralized-Decentralized Collaborative Computing

    No full text

    De novo variation in EP300 gene cause Rubinstein-Taybi syndrome 2 in a Chinese family with severe early-onset high myopia

    No full text
    Abstract Background Rubinstein-Taybi syndrome (RSTS) is characterized by distinctive facial features, broad and often angulated thumbs and halluces, short stature, and moderate-to-severe intellectual disability, classified into two types RSTS1 (CREBBP-RSTS) and RSTS2 (EP300-RSTS). More often, the clinical features are inconclusive and the diagnosis of RSTS is established in a proband with identification of a heterozygous pathogenic variant in CREBBP or EP300 to confirm the diagnosis. Methods In this study, to describe an association between the clinical phenotype and the genotype of a RSTS2 patient who was initially diagnosed with severe early-onset high myopia (eoHM) from a healthy Chinese family, we tested the proband of this family by whole exome sequencing (WES) and further verified among other family members by Sanger sequencing. Real-time quantitative PCR was used to detect differences in the relative mRNA expression of candidate genes available in the proband and family members. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. Results Whole-exome sequencing revealed that the proband carried the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene, which was not carried by the normal parents and young sister as verified by Sanger sequencing, indicating that the variant was de novo. Real-time quantitative PCR showed that the mRNA expression of EP300 gene was lower in the proband than in other normal family members, indicating that such a variant caused an effect on gene function at the mRNA expression level. The variant was classified as pathogenic as assessed by the interpretation principles of HGMD sequence variants and ACMG guidelines. According to ACMG guidelines, the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene was more likely the pathogenic variant of this family with RSTS2. Conclusions Therefore, in this paper, we first report de novo heterozygous variation in EP300 causing eoHM-RSTS. Our study extends the genotypic spectrums for EP300-RSTS and better assists physicians in predicting, diagnosis, genetic counseling, eugenics guidance and gene therapy for EP300-RSTS

    An Evaluation Method for Emergency Procedures in Automatic Metro Based on Complexity

    No full text

    Assessment of the cod stock in NAFO Division 3M

    Get PDF
    39 páginas, 27 figuras, 21 tablas.-- Scientific council meetingAn assessment of the cod stock in NAFO Division 3M is performed. A Bayesian model, as used in the last assessments, was used to perform the analysis. Results indicat e a fairly substantial increase in SSB, reaching a value well above B lim . The six-years retrospective plot shows that the r ecruitment is overestimated every year. Three year projections indicate that fishing at the F statusquo level should allow SSB to increase slowly, although abundance will remain at levels below those observed at the beginning of the series. If the fishing mortality were return to the levels seen before 1995, stock recovery would become improbablPeer reviewe
    corecore