1,172 research outputs found

    Mechanisms of isothiocyanate detoxification in larvae of two belowground herbivores, Delia radicum and D. floralis (Diptera: Anthomyiidae)

    Get PDF
    International audienceLike aboveground herbivores, belowground herbivores are confronted with multiple plant defense mechanisms including complex chemical cocktails in plant tissue. Roots and shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-myrosinase defense system. Upon cell damage, for example by herbivore feeding, toxic and pungent isothiocyanates (ITCs) can be formed. Several aboveground-feeding herbivores have developed biochemical adaptation strategies to overcome the GSL-ITC defenses of their host plant. Whether belowground herbivores feeding on Brassica roots possess similar mechanisms has received little attention. Here, we analyze how two related belowground specialist herbivores detoxify the GSL-ITC defenses of their host plants. The larvae of the fly species Delia radicum and D. floralis are common pests and specialized herbivores on the roots of Brassicaceae. We used chemical analyses (HPLC-MS/MS and HPLC-UV) to examine how the GSL-ITC defense system is metabolized by these congeneric larvae. In addition, we screened for candidate genes involved in the detoxification process using RNAseq and qPCR. The chemical analyses yielded glutathione conjugates and amines. This indicates that both species detoxify ITCs using potentially the general mercapturic acid pathway, which is also found in aboveground herbivores, and an ITC-specific hydrolytic pathway previously characterized in microbes. Performance assays confirmed that ITCs negatively affect the survival of both species, in spite of their known specialization to ITC-producing plants and tissues, whereas ITC breakdown products are less toxic. Interestingly, the RNAseq analyses showed that the two congeneric species activate different sets of genes upon ITC exposure, which was supported by qPCR data. Based on our findings, we conclude that these specialist larvae use combinations of general and compound-specific detoxification mechanisms with differing efficacies and substrate preferences. This indicates that combining detoxification mechanisms can be an evolutionarily successful strategy to handle plant defenses in herbivores

    Static and dynamic single leg postural control performance during dual-task paradigms

    Get PDF
    ABSTRACTCombining dynamic postural control assessments and cognitive tasks may give clinicians a more accurate indication of postural control under sport-like conditions compared to single-task assessments. We examined postural control, cognitive and squatting performance of healthy individuals during static and dynamic postural control assessments in single- and dual-task paradigms. Thirty participants (female = 22, male = 8; age = 20.8 ± 1.6 years, height = 157.9 ± 13.0 cm, mass = 67.8 ± 20.6 kg) completed single-leg stance and single-leg squat assessments on a force plate individually (single-task) and concurrently (dual-task) with two cognitive assessments, a modified Stroop test and the Brooks Spatial Memory Test. Outcomes included centre of pressure speed, 95% confidence ellipse, squat depth and speed and cognitive test measures (percentage of correct answers and reaction time). Postural control performance varied between postural control assessments and testing paradigms. Participants did not squat..

    Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Get PDF
    Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid), some Polycyclic Aromatic Hydrocarbon (PAHs) or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany) using an Aerodyne Aerosol Mass Spectrometer (AMS). Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59%) while in winter, the nitrate fraction was more prevalent (34.4%). The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3− = 3.6 μg m−3) than in summer (ΔNO3− = 0.7 μg m−3). The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC) ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc) from −0.66 to −0.4), which could be correlated to hydroxyl radical (OH) and ozone concentrations, indicating a photochemical transformation process. In summer, the organic particulate matter seemed to be heavily influenced by regional secondary formation and transformation processes, facilitated by photochemical production processes as well as a diurnal cycling of the substances between the gas and particulate phase. In winter, these processes were obviously less pronounced (OM/OC ranging from 1.60 to 1.67 and OSc from −0.8 to −0.7), so that organic matter apparently originated mainly from aged particles and long range transport

    Разработка программы мероприятий по внедрению наилучших доступных технологий на примере теплоэнергетики

    Get PDF
    В связи с изменениями экологического законодательства в РФ обязательным требованием будет являться переход предприятий на НДТ с 2020 года. В работе будут предложены мероприятия для уменьшения воздействия теплоэнергетических предприятий на атмосферный воздух путем перехода на НДТ.In connection with the change in environmental legislation in the Russian Federation, the mandatory requirement will be the transition to BAT since 2020. The work will propose measures to reduce the impact of heat power plants on atmospheric air by switching to BAT

    Chemical composition and bioactivity of essential oils and extracts from Oregano from Madeira Island, Portugal

    Get PDF
    In the course of ongoing investigations on polymorphic Lamiaceae species, we studied Origanum vulgare spp. virens growing wild in several locations of Madeira Island, Portugal. Variation in essential oil composition with climate conditions was studied. The antimicrobial activity of the various essential oils was determined against 10 strains of bacteria and yeasts, usually found as human pathogenic or food contaminants. The essential oils inhibited all the bacteria tested excepting for P. aeruginosa. The most sensitive microorganism was M. smegmatis with MIC = 25 µg ml-1 for two of the oils. The results of this study suggest a potential application of these oils in preventing the human pathogenic and food contaminant microorganisms growth. Radical scavenging capacity of essential oils and solvent extract (hexane, chloroform, ethyl acetate and methanol) were also determined, since interest of oregano resides in both non polar and polar fractions, all known by their very high antioxidant activity. From the hexane fraction, we obtained a large amount of 1-hexacosanol, C26H54O, a long chain alcohol, which was previously extracted in the non-esterified form only from Hygrophila erecta.info:eu-repo/semantics/publishedVersio

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account

    Geometric Thermodynamics of Schwarzschild-AdS black hole with a Cosmological Constant as State Variable

    Full text link
    The thermodynamics of the Schwarzschild-AdS black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Different choices of the metric in the equilibrium states manifold are used in order to reproduce the Hawking-Page phase transition as a divergence of the thermodynamical curvature scalar. We show that the enthalpy and total energy representations of GTD does not reproduce the transition while the entropy rep- resentation gives the expected behavior.Comment: 14 page

    Evidence for a regulatory role of CTP : Choline phosphate cytidylyltransferase in the synthesis of phosphatidylcholine in fetal lung following premature birth

    Full text link
    The sequence of reactions which function to incorporate choline into phosphatidylcholine was investigated in lung from fetuses following premature delivery. The rate of [methyl-14C]choline incorporation by rat lung slices into phosphatidylcholine increases following premature delivery at both 20 and 21 days gestation. The increase in choline incorporation is primarily due to an increased specific activity of phosphorylcholine resulting from a decreased pool size of phosphorylcholine. The decrease in the concentration of phosphorylcholine following premature delivery is apparently caused by an increased activity of cytidylyltransferase which leads to an increase in the conversion of phosphorylcholine to phosphatidylcholine. The total activity of choline kinase, cytidylyltransferase, cholinephosphotransferase and phosphatidate phosphohydrolase did not change significantly. However, the cytidylyltransferase activity in the microsome fraction increased following premature delivery at 20 and 21 days gestation. The amount of cytidylyltransferase in the H form in the cytosol fraction increased following premature delivery at 21 days gestation but not at 20 days gestation. The results are interpreted to indicate that the active form of cytidylyltransferase in lung cells is the membrane-bound enzyme and this form increases following birth resulting in an increased synthesis of phosphatidylcholine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24304/1/0000570.pd

    The community ecology perspective of omics data

    Get PDF
    The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (β-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and β-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract
    corecore